首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
H Schnell  M Steinmetz  H G Zachau  I Schechter 《Nature》1980,286(5769):170-173
Immunoglobulin light chain genes of the mouse are composed in germ-line DNA of four separate segments, the leader, V (variable), J (joining) and C (constant) segments. In immunocompetent cells a V and J gene segment are joined by a site-specific recombination event. In variants of the mouse myeloma MPC11 a so-called kappa (k) light chain fragment is expressed which consists of the MOPC321 leader peptide, joined to the kappa constant region peptide. Using the Southern blotting technique we found that the gene coding for the light chain fragment has apkparently been generated by an aberrant translocation of a V gene segment identical or very similar to the MOPC321 V gene segment into the large intervening sequence between the J and the C gene segments. The resulting deletion of the splice signals of the J segments could be the reason for the observed splicing between leader and C region sequences, a phenomenon which may be of general interest for the understanding of the splicing mechanism.  相似文献   

2.
S Desiderio  D Baltimore 《Nature》1984,308(5962):860-862
The genes encoding the variable regions of murine immunoglobulin light chains are present in the germ line in two separate segments, V and J. During B lymphocyte differentiation these segments are brought together to form a single unit (for review see ref. 1). Although much is known about the structures of V and J segments, both in germ-line configuration and after rearrangement, essentially nothing is known about the biochemical mechanism of V-J recombination. One possible step in proposed mechanisms of immunoglobulin gene rearrangement is endonucleolytic cleavage of the participating DNA segments before joining. In an attempt to detect such an activity, we have developed an assay for the detection of site-specific double- or single-strand endonucleolytic activity in crude soluble extracts. Using this assay we have detected an activity in extracts of nuclei from mouse B-lymphoid lines and from mouse L cells that is capable of introducing duplex breaks near the recombinational signal sequences of immunoglobulin JK segments. We report the activity here because of its intrinsic interest although we lack any direct evidence that it has a role in V-J recombination.  相似文献   

3.
H Sakano  K Hüppi  G Heinrich  S Tonegawa 《Nature》1979,280(5720):288-294
The entire nucleotide sequence of a 1.7-kilobase embryonic DNA fragment containing five joining (J) DNA segments for mouse immunoglobulin kappa chain gene has been determined. Each J DNA segment can encode amino acid residues 96--108. Comparison of one of the five J DNA sequences with those of an embryonic variable (V) gene and a complete kappa chain gene permitted localisation of a precise recombination site. The 5'-flanking regions of J DNA segments could form an inverted stem structure with the 3'-non-coding region of embryonic V genes. This hypothetical structure and gel-blotting analysis of total embryo and myeloma DNA suggest that the somatic recombination may be accompanied by excision of an entire DNA segment between a V gene and a J DNA segment. Antibody diversity may in part be generated by modulation of the precise recombination sites.  相似文献   

4.
5.
The genes encoding the variable regions of lymphocyte antigen receptors are assembled from variable (V), diversity (D) and joining (J) gene segments. V(D)J recombination is initiated by the recombinase activating gene (RAG)-1 and -2 proteins, which introduce DNA double-strand breaks between the V, D and J segments and their flanking recombination signal sequences (RSSs). Generally expressed DNA repair proteins then carry out the joining reaction. The conserved heptamer and nonamer sequences of the RSSs are separated by non-conserved spacers of 12 or 23 base pairs (forming 12-RSSs and 23-RSSs). The 12/23 rule, which is mediated at the level of RAG-1/2 recognition and cutting, specifies that V(D)J recombination occurs only between a gene segment flanked by a 12-RSS and one flanked by a 23-RSS. Vbeta segments are appended to DJbeta rearrangements, with little or no direct Vbeta to Jbeta joining, despite 12/23 compatibility of Vbeta 23-RSSs and Jbeta12-RSSs. Here we use embryonic stem cells and mice with a modified T-cell receptor (TCR)beta locus containing only one Dbeta (Dbeta1) gene segment and one Jbeta (Jbeta1) gene cluster to show that the 5' Dbeta1 12-RSS, but not the Jbeta1 12-RSSs, targets rearrangement of a diverse Vbeta repertoire. This targeting is precise and position-independent. This additional restriction on V(D)J recombination has important implications for the regulation of variable region gene assembly and repertoire development.  相似文献   

6.
【目的】嗜线虫致病杆菌(Xenorhabdus)是昆虫病原线虫的共生菌,研究此共生菌分泌的抗菌活性的次级代谢产物基因蔟信息。【方法】通过直接PCR将目的基因簇分为数段扩增,利用天然酵母重组系统实现体外重组;同时采用果聚糖蔗糖转移酶基因sacB负筛选系统,通过两次同源臂重组构建基因敲除突变株,建立嗜线虫致病杆菌DSM 16338的遗传操作系统。【结果】成功获得推测目的基因簇;缺失所推测基因簇的3个相连基因,筛选到大片段缺失突变株GW2及调控基因敲除突变株GW4。【结论】利用高效的直接克隆方法获得了基因簇,成功对DSM 16338推测基因簇完成了基因中断,建立了该菌的遗传操作系统,为阐述此类细菌天然产物的生物化学多样性奠定了基础。  相似文献   

7.
K R Hinds  G W Litman 《Nature》1986,320(6062):546-549
In mammals, the immunoglobulin heavy-chain variable region (VH) locus is organized in a linear fashion; individual VH, diversity (DH), joining (JH) and constant (CH) region segments are linked in separate regions. During somatic development, coding segments flanked by characteristic short recombination signal sequences, separated by intervening sequence regions that may exceed 2,000 kilobases (kb), are recombined. Combinatorial joining of different segments as well as imprecision in this process contribute to the diversity of the primary antibody response; subsequent mutation further alters functionally rearranged genes. This basic somatic reorganization mechanism is shared by six major families of genes encoding antigen receptors. Previously, we have shown that multiple germline genes and mammalian-like recombination signal sequences are associated with the VH gene family of Heterodontus francisci (horned shark), a primitive elasmobranch. Studies presented here demonstrate that segmental reorganization involving mammalian-like DH and JH segments occurs in the lymphoid tissues of this species. In marked contrast to the mammalian system, we find multiple instances of close linkage (approximately 10 kb) between individual VH, DH, JH, and CH segments. This unique organization may limit combinatorial joining and be a factor in the restricted antibody response of this lower vertebrate.  相似文献   

8.
DNA transformation leads to pilin antigenic variation in Neisseria gonorrhoeae   总被引:48,自引:0,他引:48  
H S Seifert  R S Ajioka  C Marchal  P F Sparling  M So 《Nature》1988,336(6197):392-395
Many pathogenic bacteria express pili (fimbriae) on their cell surfaces. These structures mediate binding of bacteria to host tissues, and may also be involved in other aspects of pathogenesis. Neisseria gonorrhoeae pili are mainly composed of a single protein, pilin, whose expression is controlled at chromosomal expression loci (pilE). An intact pilin gene and promoter sequences are only found at pilE. Strain MS11 contains two expression sites (pilE1 and pilE2), whereas several of its derivatives and other clinical isolates contain only one. Silent pilin loci (pilS1-pilS7) contain truncated variant pilin genes lacking the promoter and conserved pilin gene sequences. Pilin antigenic variation in N. gonorrhoeae occurs by DNA recombination between one of he silent partial variant gene segments in pilS and an expressed pilin gene in pilE. The recombination reactions are nonreciprocal, and therefore the mechanism has been classified as gene conversion. We report that much of the recombination between pilin loci actually occurs after transformation of living piliated cells by DNA liberated from lysed cells within a population. This constitutes a new molecular mechanism for an antigenic variation system, as well as the first specific function for a DNA transformation system.  相似文献   

9.
Gene conversion between duplicated genetic elements in yeast   总被引:96,自引:0,他引:96  
J A Jackson  G R Fink 《Nature》1981,292(5821):306-311
The mitotic recombination behaviour of a duplication of the his4 region on chromosome III in the yeast Saccharomyces cerevisiae was studied. The major recombination event between the duplicated segments is gene conversion unassociated with reciprocal recombination. The rad52-1 mutation preferentially decreases mitotic gene conversion. These results suggest that mitotic gene conversion may occur by a different pathway from that occurring in meiosis. This mitotic gene conversion may be important in yeast mating type interconversion and the maintenance of sequence homogeneity in families of repeated eukaryotic genes.  相似文献   

10.
J G Seidman  E E Max  P Leder 《Nature》1979,280(5721):370-375
The active gene for a kappa light chain is formed by a somatic recombination event that joins one of several hundred variable region genes to one of a series of recombination sites (J-segments) encoded close to the kappa constant region gene. The nucleotide sequences of cloned germ line and somatically recombined genes define the precise organisation of these genetic segments and the site and nature of the recombination event that joined them. Apart from somatic recombination, no further alteration of ther germ line sequence has occurred. The J-segment is of special interest as it encodes signals for both DNA and RNA splicing and provides a means of generating further immunoglobulin gene diversity.  相似文献   

11.
Y Yoshikai  S P Clark  S Taylor  U Sohn  B I Wilson  M D Minden  T W Mak 《Nature》1985,316(6031):837-840
An essential property of the immune system is its ability to generate great diversity in antibody and T-cell immune responses. The genetic and molecular mechanisms responsible for the generation of antibody diversity have been investigated during the past several years. The gene for the variable (V) region, which determines antigen specificity, is assembled when one member of each of the dispersed clusters of V gene segments, diversity (D) elements (for heavy chains only) and joining (J) segments are fused by DNA rearrangement. The cloning of the beta-chain of the T-cell antigen receptor revealed that the organization of the beta-chain locus, which is similar to that of immunoglobulin genes, is also composed of noncontiguous segments of V, D, J and constant (C) region genes. The structure of the alpha-chain seems to consist of a V and a C domain connected by a J segment. We report here that the human T-cell receptor alpha-chain gene consists of a number of noncontiguous V and J gene segments and a C region gene. The V region gene segment is interrupted by a single intron, whereas the C region contains four exons. The J segments, situated 5' of the C region gene, are dispersed over a distance of at least 35 kilobases (kb). Signal sequences, which are presumably involved in DNA recombination, are found next to the V and J gene segments.  相似文献   

12.
M Wabl  J Meyer  G Beck-Engeser  M Tenkhoff  P D Burrows 《Nature》1985,313(6004):687-689
B lymphocytes may switch from producing an immunoglobulin heavy chain of the mu class to that of the gamma, epsilon or alpha class. To maintain the specificity, the new heavy chain must keep the original variable (V) region; this is achieved by deleting DNA sequences so that the V (consisting of joined VH, diversity (DH) and joining (JH) gene segments) and C (constant) gene segments coding for the new heavy chain are brought into close proximity (reviewed in ref. 5; we do not consider here the mu-delta situation). There are, in principle, three types of chromosomal rearrangements that yield a deletion: rearrangement within a chromatid; unequal sister chromatid exchange (as suggested by Obata et al.); and unequal recombination between chromosomal homologues. We have analysed the arrangement of C mu DNA in clones of the pre-B-cell line 18-81 that switches in vitro from mu to gamma 2b. The clones examined produce either mu, gamma 2b or no immunoglobulin chain. We report here that all the gamma 2b clones had lost at least one copy of C mu and no clones contained three copies of C mu. These findings formally exclude both unequal sister chromatid exchange and recombination between homologues as mechanisms for creating a gene encoding the gamma 2b chain.  相似文献   

13.
J H?chtl  H G Zachau 《Nature》1983,302(5905):260-263
Functional kappa light chain genes are formed during B-lymphocyte differentiation by the joining of initially separate V and J gene segments. It has been suggested that the intervening DNA is deleted, however the recent reports of what appear to be the reciprocal products of V and J recombination (back-to-back conserved V and J flanking sequences, called f-fragments) in DNA from mature lymphocytes make a simple deletion model unlikely. An alternative scheme involving unequal sister chromatid exchange has been proposed, supported by the evidence that the f-fragments seem to have segregated from the chromosome carrying the reciprocal complete kappa light chain gene (this and other schemes are briefly reviewed in ref. 8). We report here the analysis of a mouse myeloma (MOPC 41), in which a productive (kappa+) and a non-productive (kappa-) rearrangement has occured, which may help to clarify the mechanism of V-J joining. The aberrant rearrangement has led to the joining of a J1 gene segment to a sequence unrelated to any V gene (L10), and which in the germ line is flanked by a sequence resembling a V region recombination signal sequence. In this case no segregation of the reciprocal recombination products (kappa-41 and f41), which is a required step in sister chromatid exchange models, has taken place. An inversion model provides the simplest explanation of this J rearrangement.  相似文献   

14.
The human T-cell receptor alpha-chain gene maps to chromosome 14   总被引:7,自引:0,他引:7  
The T-cell receptor for antigen has been identified as a disulphide-linked heterodimeric glycoprotein of relative molecular mass (Mr) 90,000 comprising an alpha- and a beta-chain. The availability of complementary DNA clones encoding mouse and human beta-chains has allowed a detailed characterization of the genomic organization of the beta-chain gene family and has revealed that functional beta-chain genes in T cells are generated from recombination events involving variable (V), diversity (D), joining (J) and constant (C) gene segments. Recently, cDNA clones encoding mouse and human alpha-chains have been described; the sequences of these clones have indicated that functional alpha-chain genes are also generated from multiple gene segments. It is possible that chromosomal translocations involving T-cell receptor alpha- and beta-chain genes have a role in T-cell neoplasms in much the same way as translocations involving immunoglobulin genes are associated with oncogenic transformation in B cells. In the latter case, the chromosomal localization of the immunoglobulin genes provided one of the first indications of the involvement of such translocations in oncogenic transformation. The chromosomal assignment of the alpha- and beta-chain genes may, therefore, provide equally important clues for T-cell neoplastic transformation. The chromosomal location of the mouse and human beta-chain gene family has been determined: the murine gene lies on chromosome 6 (refs 12, 13) whereas the human gene is located on chromosome 7 (refs 13, 14). Here we use a cDNA clone encoding the human alph-chain to map the corresponding gene to chromosome 14.  相似文献   

15.
The association between certain human tumours and characteristic chromosomal abnormalities has led to the hypothesis that specific cellular oncogenes may be involved and consequently 'activated' in these genetic recombinations. This hypothesis has found strong support in the recent findings that some cellular homologues of retroviral onc genes are located in chromosomal segments which are affected by specific tumour-related abnormalities (see ref. 4 for review). In the case of human undifferentiated B-cell lymphoma (UBL) and mouse plasmacytomas, cytogenetic and chromosomal mapping data have identified characteristic chromosomal recombinations directly involving different immunoglobulin genes and the c-myc oncogene (for review see refs 5, 6). In UBLs carrying the t(8:14) translocation it has been shown that the human c-myc gene is located on the region of chromosome 8 (8q24) which is translocated to the immunoglobulin heavy-chain locus (IHC) on chromosome 14. Although it is known that the chromosomal breakpoints can be variably located within or outside the c-myc locus and within the IHC mu (refs 9, 11) or IHC gamma locus, the recombination sites have not been exactly identified and mapped in relation to the functional domains of these loci. We report here the identification and characterization of two reciprocal recombination sites between c-myc and IHC mu in a Burkitt lymphoma. Nucleotide sequencing of the cross-over point joining chromosomes 8 and 14 on chromosome 14q--shows that the onc gene is interrupted within its first intron and joined to the heavy-chain mu switch region. This recombination predicts that the translocated onc gene would code for a rearranged mRNA but a normal c-myc polypeptide.  相似文献   

16.
S Fujimoto  H Yamagishi 《Nature》1987,327(6119):242-243
The genes for the T-cell receptor, like the immunoglobulin genes, are rearranged as DNA. The mechanism of this rearrangement is not clear; unequal crossover between chromosomes and the looping-out and excision of the excess DNA have both been suggested. We isolated small polydisperse circular (spc) DNAs from mouse thymocytes and cloned them into a phage vector. Of the 56 clones we analysed, nine contained sequences homologous to T-cell receptor alpha-chain joining (J alpha) segments. We have characterized one of these clones; it contains one J alpha segment, and the product out of the recombination of a variable region of the alpha-chain gene (V alpha) with a J alpha gene segment. This is the first demonstration of the presence in extrachromosomal DNA of a reciprocal recombination product of any rearranging immunoglobulin or T-cell receptor gene. The finding verifies that V alpha-J alpha joining can occur by the looping-out and excision of chromosomal DNA.  相似文献   

17.
The newly described T-cell receptor (TCR) delta locus is located inside the TCR alpha locus, between variable region (V)alpha and joining region (J)alpha. Although the delta and alpha TCR genes are physically linked on the same chromosome, they are sequentially expressed during T-cell development. This implies the existence of a highly efficient regulatory mechanism by which these two genes are independently rearranged. We have recently described a genetic element 'T early alpha' (TEA) in humans transcribed in foetal thymocytes, spliced alternatively to constant region (C)alpha, and located between the TCR-delta locus (5') and the group of J alpha segments (3'). Importantly, TEA flanks a common site of rearrangement in the thymus, and distinguishes cells using TCR-gamma/delta (TEA in germline configuration) from cells using TCR-alpha/beta (TEA deleted on both chromosomes). In order to understand this TEA-associated recombination we analysed genomic clones representing these thymic rearrangements. We show that the TEA-associated recombination deletes the delta locus before productive (V delta D delta J delta) rearrangement. The diversity (D)delta and J delta regions, which provide the major source of delta gene diversity, are eliminated as a consequence of delta gene deletion and cannot then be used in conjunction with an alpha-TCR. We propose that the TEA-associated deletion of TCR-delta precedes the formation of an alpha-TCR and could down-regulate TCR-delta formation in maturing thymus.  相似文献   

18.
19.
The early stages of murine B-cell differentiation are characterized by a series of immunoglobulin gene rearrangements which are required for the assembly of heavy(H) and light(L)-chain variable regions from germline gene segments. Rearrangement at the heavy-chain locus is initiated first and consists of the joining of a diversity (DH) gene segment to a joining (JH) gene segment. This forms a DJH intermediate to which a variable (VH) gene segment is subsequently added. Light-chain gene rearrangement follows and consists of the joining of a VL gene segment to a JL gene segment: once a productive light-chain gene has been formed the cell initiates synthesis of surface immunoglobulin M (sIgM) receptors (reviewed in ref. 1). These receptors are clonally distributed and may undergo further diversification either by somatic mutation or possibly by continued recombinational events. Such recombinational events have been detected in the Ly 1+ B-cell lymphoma NFS-5, which has been shown to rearrange both lambda and H-chain genes subsequent to the formation of sIgM (mu kappa) molecules. Here we have analysed a rearrangement of the productive allele of NFS-5 and found that it is due to a novel recombination event between VH genes which results in the replacement of most or all of the coding sequence of the initial VHQ52 rearrangement by a germline VH7183 gene. Embedded in the VH coding sequence close to the site of the cross-over is the sequence 5' TACTGTG 3', which is identical to the signal heptamer found 5' of many DH gene segments. This embedded heptamer is conserved in over 70% of known VH genes. We suggest that this heptamer mediates VH gene replacement and may play an important part in the development of the antibody repertoire.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号