共查询到20条相似文献,搜索用时 93 毫秒
1.
基本粒子群算法(PSO)存在早熟问题,且惯性权重对参数辨识结果的影响较大,为此提出将变权重PSO算法和全局最优位置变异PSO算法相结合的改进PSO算法,并将其应用于双馈感应发电机(DFIG)的参数辨识。分析了DFIG中各参数的可辨识性和辨识难易度,给出了基于改进PSO算法的参数辨识步骤。与采用基本PSO算法、变权重PSO算法和全局最优位置变异PSO算法的参数辨识结果相比较,该方法具有收敛速度快、辨识误差小的优点,即使在较大的搜索范围内仍具有较高的辨识精度。 相似文献
2.
为克服标准粒子群算法搜索后期收敛速度慢、容易陷入局部最优的缺点,通过引进自适应惯性权重因子平衡标准粒子群优化算法的全局搜索和局部改良能力,同时设计了均匀分布变异和高斯分布变异相结合的粒子群混合纵向多变异策略,来提高算法摆脱局部极值和局部寻优的能力.根据提出的改进算法流程,针对公认的Sphere,Rastrigin,Griewank和Salomon四种标准测试函数进行了收敛精度和收敛速度的测试.测试结果表明,在标准粒子群、自适应权重粒子群、自适应变异粒子群和自适应混合多变异粒子群4种算法中,提出的新算法具有最好的全局最优值搜索能力和最稳定的全局收敛特性,且在提高收敛速度的同时,有效地避免了早熟收敛问题. 相似文献
3.
简化的自适应粒子群优化算法 总被引:2,自引:0,他引:2
对基本粒子群优化算法作了一些改进:通过去掉速度因子简化算法结构,引入指数下降形式的惯性权重,对全局极值进行自适应的变异操作,进而提出一种简化的带变异算子的自适应粒子群优化算法。通过与其他改进的粒子群算法的数值实验对比分析,表明提出的新算法能够有效地避免早熟收敛问题,并能较大幅度地提高收敛速度和收敛精度。 相似文献
4.
在能源短缺和环境污染日益严重的今天,作为可再生绿色能源的风能的开发利用具有十分重要的意义。本文以交流励磁变速恒频风力发电系统的运行与控制为主题,进行了从理论到仿真的全面、深入的研究。对DFIG(双馈型感应发电机)的并网运行理论、最大风能追踪机理、DFIG有功无功功率解耦控制、双PWM型变换器特性等方面进行了细致的研究,获得了一些重要结论和具有创新意义的成果。 相似文献
5.
一种基于种群多样性的自适应粒子群算法 总被引:2,自引:0,他引:2
以信息熵的角度研究了种群多样性测度的指标,提出了一种新的自适应粒子群算法.通过对种群多样性测度新指标的应用,采用保留最优个体的精英保留变异操作、新的速度项和动态惯性权重等技术,有效提高了种群的多样性.仿真试验说明了本文算法的优点. 相似文献
6.
基于粒子群算法的重油热解模型参数估计 总被引:1,自引:0,他引:1
针对标准粒子群算法在进化过程中种群多样性降低而早熟的问题,提出了一种根据种群多样性测度动态改变惯性权重系数的自适应粒子群算法,该算法能够平衡算法的全局探索和局部开发能力,不仅有效地避免早熟,而且具有较快的收敛速度.两个经典的测试函数的仿真结果表明了算法的有效性.将改进的粒子群算法应用于重油热解模型参数估计中,效果明显. 相似文献
7.
针对标准粒子群算法收敛性和收敛速度的问题,分析标准粒子群算法惯性参数对算法性能优化的影响,提出一种自适应改变惯性权重的粒子群算法(ACPSO)。通过对粒子速度和位置变化过程的分析,并结合早熟收敛程度和个体适应值自适应的调整惯性权重,使得算法能在全局收敛性和收敛速度之间找到良好的平衡关系,并且通过典型的函数测试,表明此方法有效的控制了粒子群的多样性,而且具有良好的收敛速度。 相似文献
8.
张寅 《苏州科技学院学报(自然科学版)》2011,28(3):62-65
为了改善粒子群优化算法在收敛后期极易陷入局部最优的缺陷,提出了在非线性惯性权重策略粒子群算法的前提下,对陷入局部极值区域的粒子进行位置变异,使得粒子能很好地跳出局部极值区域,并在迭代前期及后期采用不同速度变异策略使处于个体极值点的粒子改变速度,能够有效地提高算法的前期全局搜索能力和后期局部开挖能力。通过4个经典测试函数验证了该算法具有更好的优化性能。 相似文献
9.
10.
惯性权重是粒子群优化算法重要参数之一,它能够平衡算法的全局搜索能力和局部搜索能力.为了利用已知惯性权重解决某些问题的优点,提出一种多惯性权重的自适应粒子群优化算法.首先定义了K步进化度的概念,然后基于进化度,从惯性权重集中随机选择惯性权重,使得适合解决某一问题的惯性权重在迭代过程中能够多次被使用,从而提高算法性能,把该... 相似文献
11.
带时间窗车辆路径问题的混合粒子群算法 总被引:7,自引:1,他引:7
将粒子群优化算法与模拟退火算法结合,提出了一种求解车辆路径问题的混合粒子群算法.实例计算及与遗传算法比较的结果表明:应用混合粒子群算法可以快速地求得带时间窗车辆路径问题的优化解;该算法是一种求解离散组合优化问题的有效方法. 相似文献
12.
基于粒子群和人工蜂群算法的混合优化算法 总被引:1,自引:0,他引:1
提出一种基于粒子群(PSO)和人工蜂群算法(ABC)相结合的新型混合优化算法—PSOABC。该算法基于一种双种群进化策略,一个种群中的个体由粒子群算法进化而来,另一种群的个体由人工蜂群算法进化而来,并且在人工蜂群算法中按轮盘赌的方式选择个体进化所需的随机个体。此外,算法采用一种信息分享机制,使两个种群中的个体可以实现协同进化。对4个基准函数进行仿真实验并与ABC进行比较,表明本文提出的算法能有效地改善寻优性能,增强摆脱局部极值的能力。 相似文献
13.
将粒子群优化算法与一种自适应局部搜索算法相结合,提出了一种新的混合粒子群优化算法,使粒子群算法寻优过程中的全局搜索能力和局部搜索能力良好平衡;采用了典型函数和模糊神经网络优化问题对算法性能进行测试,并与其它方法进行比较.实验结果表明,这种混合粒子群优化算法能获得质量更好的解,具有较高的收敛性,特别是在高维复杂函数优化上具有很强的竞争力,其性能大大优于单一的优化方法. 相似文献
14.
将粒子群优化算法与一种自适应局部搜索算法相结合,提出了一种新的混合粒子群优化算法,使粒子群算法寻优过程中的全局搜索能力和局部搜索能力良好平衡;采用了典型函数和模糊神经网络优化问题对算法性能进行测试,并与其它方法进行比较.实验结果表明,这种混合粒子群优化算法能获得质量更好的解,具有较高的收敛性,特别是在高维复杂函数优化上具有很强的竞争力,其性能大大优于单一的优化方法. 相似文献
15.
采用多样性引导粒子群算法的干式空心电抗器优化设计 总被引:1,自引:0,他引:1
针对粒子群优化(PSO)算法易于早熟收敛的问题,提出了采用多样性引导的吸引-排斥粒子群优化(DGARPSO)算法,并应用于干式空心电抗器的优化设计中.该算法在吸引-排斥粒子群优化(ARPSO)算法中引入变异操作,即当进化群体多样性或个体极值群体多样性小于下限值时,以一定概率对粒子的位置进行变异,从而使得粒子在群体多样性很低时飞离群体的聚集位置,有效减少了PSO算法的早熟收敛现象,同时还比较了均匀变异、高斯变异和柯西变异对优化结果的影响.对50 kV·A干式空心电抗器的仿真结果表明,DGARPSO算法提高了全局搜索能力,比GA算法、PSO算法和ARPSO算法具有更好的寻优性能. 相似文献
16.
段玉红 《甘肃联合大学学报(自然科学版)》2011,25(6)
针对粒子群算法应用于复杂函数优化时可能出现过早收敛于局部最优解的情况,提出了一种改进的算法结构.通过构造单个粒子的多个进化方向和类似于蚂蚁群算法信息素表的选择机制,保留了粒子的多种可能进化方向,并对全局最优解进行变异.提高了粒子间的多样性差异,从而改善算法能力.改进后的粒子群算法的性能优于带线性递减权重的粒子群算法. 相似文献
17.
针对粒子群算法搜索精度不高、易早熟收敛、搜索后期多样性下降快等问题,提出一种基于运动方向变异的混合改进粒子群算法.该算法通过改变部分粒子的运动方向增加种群多样性,扩大粒子的搜索范围;利用非线性减小惯性权重的方法增加搜索后期的精度;用线性地增大和减小两个学习因子来平衡搜索的范围和精度,使得在搜索前期能够迅速定位到全局最优点附近,在搜索后期能够收敛到全局最优点.将该方法应用于函数优化中,仿真结果表明,该算法能够使粒子均匀分布在最优值空间范围内,调整和平衡粒子的全局搜索和局部精细搜索能力,同时能延缓粒子多样性的下降速度,使粒子能够跳出局部最优值. 相似文献
18.
罗飞;林小兰;许玉格;李慧娟 《华南理工大学学报(自然科学版)》2008,36(8)
粒子群算法(Particle Swarm Optimization, PSO)具有模型简单,收敛的快速性和在连续系统中应用的优势,但存在着进化的后期收敛速度变慢,易陷入局部值的缺点。人工免疫 (Artificial Immune, AI) 优化算法利用人工免疫系统抗体多样性的机理和克隆选择算子搜索抗体群,具有很强的全局寻优能力,可以弥补粒子群算法的缺点。结合这两种算法的优缺点,提出了免疫粒子群 (Immune PSO, IPSO) 混合优化算法,并应用于混合电梯群控系统中进行派梯优化,取得了良好的效果。与人工免疫优化算法、粒子群算法分别进行比较,显示出免疫粒子群混合优化算法在优化派梯方案的优越性。文章的结尾展望了今后工作的研究重点和发展趋势。 相似文献
19.
一种动态非线性改变惯性权的自适应粒子群优化算法 总被引:1,自引:0,他引:1
惯性权值线性递减(LDI)的粒子群算法不能很好地反映粒子搜索过程的复杂非线性行为,收敛速度和收敛精度仍不够理想。对此,提出一种动态非线性改变惯性权(DNI)的自适应粒子群算法。在该算法中通过引入非线性指数函数来描述惯性权值在进化过程中的动态变化特性,并通过数值实验确定了非线性函数关键控制参数的合适取值范围。通过典型测试函数验证算法的性能,并与文献报道的已有结果比较。实验表明:对单峰值函数优化问题,DNI自适应粒子群算法收敛速度明显优于LDI算法;对多峰值函数优化问题,DNI算法跳出局部最优的能力及收敛精度也好于LDI算法。 相似文献
20.
传统粒子群算法运行机理是通过粒子群全局最优和自身经验最优来搜索最优位置,不断迭代进化,以此趋近最优解,但该算法共享信息的局限性使其容易陷入局部最优.针对传统粒子群算法的不足,提出了共享历史最优搜索信息的粒子群算法.该粒子群体在搜索过程中,共享算法本次运行的种群个体历史最优信息、当前全局最优信息,及前几次运行过程中的种群个体历史最佳信息.通过5个经典函数的仿真实验测试,验证了该算法具有较强的全局搜索能力和收敛性. 相似文献