共查询到20条相似文献,搜索用时 0 毫秒
1.
在分析了Kohonen自组织特征映射网络(SOFM)和学习矢量量化(LVQ)算法的基础上,提出一种基于改进的SOFM算法和LVQ2算法的混合学习矢量量化(HLVQ)方法,并建立了基于HLVQ的遥感影像非监督和监督分类的一般模型。通过与传统的统计分类方法和LVQ2网络分类器比较,HLVQ分类器总的分类性能更好、识别率更高。 相似文献
2.
为提高支持向量回归在时间序列预测应用中的学习速度和泛化性能,提出了稀疏型支持向量回归方法.通过牛顿优化法,直接优化支持向量回归的原始问题.然后利用Cholesky分解更新原始优化中的Hessian矩阵实现稀疏型支持向量回归算法.最后将该算法运用到Mackey-Glass,Lorenz和Logistic混沌时间序列预测,仿真结果表明本文提出的方法能够在确保预测精度的前提下,有效地降低支持向量的个数. 相似文献
3.
基于遗传算法的支持向量回归机参数选取 总被引:14,自引:0,他引:14
针对支持向量回归机(support vector regression,SVR)的参数选择问题,提出了基于遗传算法的SVR参数自动确定方法。分析了SVR各参数对其性能的影响,根据已有的样本集确定遗传算法的搜索区间,然后在该区间内对搜索的参数进行最优选取。为了减少所选参数对训练样本的依赖性,借鉴交叉验证的方法,把训练集分为估计子集,用来选择模型;确认子集选择参数,以推广能力最好的一组参数作为最终参数。将所提出的方法应用于受噪声影响的标准函数,实验结果表明,由该方法所得参数确定的SVR具有较优的预测性能。 相似文献
4.
5.
A new filtering method for SAR data de-noising using wavelet support vector regression (WSVR) is developed.On the basis of the grey scale distribution character of SAR imagery,the logarithmic SAR image as a noise polluted signal is taken and the noise model assumption in logarithmic domain with Gaussian noise and impact noise is proposed.Based on the better performance of support vector regression (SVR) for complex signal approximation and the wavelet for signal detail expression,the wavelet kernel function is chosen as support vector kernel function.Then the logarithmic SAR image is regressed with WSVR.Furthermore the regression distance is used as a judgment index of the noise type.According to the judgment of noise type every pixel can be adaptively de-noised with different filters.Through an approximation experiment for a one-dimensional complex signal,the feasibility of SAR data regression based on WSVR is confirmed.Afterward the SAR image is treated as a two-dimensional continuous signal and filtered by an SVR with wavelet kernel function.The results show that the method proposed here reduces the radar speckle noise effectively while maintaining edge features and details well. 相似文献
6.
7.
Image interpolation plays an important role in image process applications. A novel support vector machines (SVMs) based interpolation scheme is proposed with increasing the local spatial properties in the source image as SVMs input patterns. After the proper neighbor pixels region is selected, trained support vectors are obtained by training SVMs with local spatial properties that include the average of the neighbor pixels gray values and the gray value variations between neighbor pixels in the selected region. The support vector regression machines are employed to estimate the gray values of unknown pixels with the neighbor pixels and local spatial properties information. Some interpolation experiments show that the proposed scheme is superior to the linear, cubic, neural network and other SVMs based interpolation approaches. 相似文献
8.
面向多源遥感数据的小波变换融合技术 总被引:3,自引:1,他引:3
从遥感影像数据出发,对基于小波变换方法的融合模型、小波变换的算法实现及其改进方法,以及小波变换的特点和客观评价标准等方面,进行了比较全面的论述。对小波变换在遥感影像融合中需进一步研究的问题进行了探讨,指出应用多进制小波进行融合是其主要的发展趋势之一。 相似文献
9.
As the solutions of the least squares support vector regression machine(LS-SVRM) are not sparse,it leads to slow prediction speed and limits its applications.The defects of the existing adaptive pruning algorithm for LS-SVRM are that the training speed is slow,and the generalization performance is not satisfactory,especially for large scale problems.Hence an improved algorithm is proposed.In order to accelerate the training speed,the pruned data point and fast leave-one-out error are employed to validate the temporary model obtained after decremental learning.The novel objective function in the termination condition which involves the whole constraints generated by all training data points and three pruning strategies are employed to improve the generalization performance.The effectiveness of the proposed algorithm is tested on six benchmark datasets.The sparse LS-SVRM model has a faster training speed and better generalization performance. 相似文献
10.
针对已有空中目标识别方法存在的经验风险大、识别率低等不足,依据空中目标的分类原则和纠错码设计原则,设计了针对该问题的纠错码,并训练了码位分类器,最后给出了基于支持向量机的空中目标大类别分类算法。该方法采用纠错编码支持向量机的多类分类技术,降低了经验风险,能对误差进行自动修正,有效地提高了识别率和识别速度。最后给出了一个算例,结果证实了该算法的有效性,并给出了与同类算法的比较结果。 相似文献
11.
如何降低支持向量机海量训练样本的数目,是提高算法速度的关键。提出利用支持向量分布的几何特征建立基于特征空间中支持向量信息测度的快速算法,对于训练样本首先进行基于支持向量信息测度升序排序处理,然后根据训练样本提供的信息测度选择合适的训练样本子空间,在该样本子空间内采用乘性规则直接求取Lagrange因子,而不是传统的二次优化方法;最后针对附加残余样本进行交叉验证处理,直到算法满足收敛性准则。各种分类实验表明,提出的算法具有较好的性能,特别是在训练样本庞大、支持向量数量较多的情况下,能够较大幅度地减少计算复杂度,提高分类速度。 相似文献
12.
A new incremental support vector machine (SVM) algorithm is proposed which is based on multiple kernel learning.Through introducing multiple kernel learning into the SVM incremental learning,large scale data set learning problem can be solved effectively.Furthermore,different punishments are adopted in allusion to the training subset and the acquired support vectors,which may help to improve the performance of SVM.Simulation results indicate that the proposed algorithm can not only solve the model selection problem in SVM incremental learning,but also improve the classification or prediction precision. 相似文献
13.
基于支持矢量机和循环累积量的调制识别算法 总被引:2,自引:0,他引:2
利用通信信号的循环平稳特性,在循环累积量域内构造信号分类特征矢量,采用支持矢量机将分类特征矢量映射到高维空间并构建最优分类超平面,实现对QAM调制信号的自动识别。该算法解决了样本在低维空间中的不可分问题,具有良好的泛化推广性能,并且可在多种调制信号环境下实现对感兴趣信号类型的识别。理论分析和仿真结果均证明了算法的正确性和有效性。 相似文献
14.
支持向量机的多分类算法 总被引:14,自引:0,他引:14
系统介绍了统计学习理论(statistical learning theory,SLT)与支持向量机(support vector machine,SVM)的基本思想和算法,总结和比较了二分类和多分类两种情况下支持向量机的主要训练算法。与人工神经网络相比,分析了支持向量机算法的优点。归纳了支持向量机在诸如模式识别、函数逼近、时间序列预测、故障预测和识别、信息安全、电力系统以及电力电子领域中的应用。最后对SVM前景作了展望。 相似文献
15.
基于灰色支持向量机的新型预测模型 总被引:11,自引:1,他引:11
分析了灰色预测方法和支持向量机各自的优缺点,提出了将二者相结合的一种新的预测模型———灰色支持向量机预测模型.新模型发挥了灰色预测方法中“累加生成”的优点,弱化了原始序列中随机扰动因素的影响,增强了数据的规律性,同时避免了灰色预测方法及模型存在的理论缺陷.实验结果表明文章所提出的预测模型有效可靠,为提高预测精度提供了新的途径. 相似文献
16.
This paper proposes a novel drifting modeling (DM) method. Briefly, we first employ an improved SVMs algorithm named weighted support vector machines (W_SVMs), which is suitable for locally learning, and then the DM method using the algorithm is proposed. By applying the proposed modeling method to Fluidized Catalytic Cracking Unit (FCCU), the simulation results show that the property of this proposed approach is superior to global modeling method based on standard SVMs. 相似文献
17.
胡正平 《系统工程与电子技术》2006,28(5):677-680
针对经典区域增长算法中生长规则以及特征选取困难的问题,提出基于可拒识双层支持向量机模型的多目标并行区域增长图像分割算法。首先交互选择多个不同区域的种子点,并交互选择属于每个目标区域的子块和非目标区域的子块形成双层支持向量机训练样本;然后利用这些已知的训练样本训练双层支持向量分类器;在区域增长过程中,首先利用第一层的最大间隔超平面的支持向量分类器(SVC)进行分类判决,对属于该区域的点再利用第二层的支持向量域数据选择器(SVDD)进行拒识或接受处理,最后利用两层分类器的结果进行综合判决。为避免初始种子点位置选择对算法性能的影响,采用了多区域并行竞争增长策略。仿真实验获得了较好的分割效果,实验结果表明,提出的算法是合理可行的。 相似文献
18.
基于支持向量机的信息融合诊断方法 总被引:6,自引:1,他引:6
提出了一种采用小波变换进行特征提取、支持向量机进行模式分类的多传感器信息融合诊断方法。该方法首先对多传感器的信息进行加权初级融合,接着利用小波变换的时频局部特性和多尺度、多分辨特性对传感器测量信号进行特征提取,最后利用支持向量机进行分类实现信息的特征级融合和分类。将其应用于某转子实验台的故障诊断中,取得了令人满意的结果。 相似文献
19.
Decision tree support vector machine based on genetic algorithm for multi-class classification
下载免费PDF全文

To solve the multi-class fault diagnosis tasks, decision tree support vector machine (DTSVM), which combines SVM and decision tree using the concept of dichotomy, is proposed. Since the classification performance of DTSVM highly depends on its structure, to cluster the multi-classes with maximum distance between the clustering centers of the two sub-classes, genetic algorithm is introduced into the formation of decision tree, so that the most separable classes would be separated at each node of decisions tree. Numerical simulations conducted on three datasets compared with "one-against-all" and "one-against-one" demonstrate the proposed method has better performance and higher generalization ability than the two conventional methods. 相似文献
20.
基于支持向量机和子空间划分的波段选择方法 总被引:6,自引:0,他引:6
高光谱图像具有较高的谱分辨力,从而能够更精确地描述地物目标特性。然而,其较大的数据量和较高的数据维给分析和处理带来很大的困难。高光谱图像间存在着大量的冗余信息,波段选择能够有效地去除冗余信息从而减少计算量。针对一类波段选择方法所选取的波段易于集中而造成信息冗余和信息损失的缺陷,提出一种基于支持向量机和子空间划分的波段选择方法。首先对支持向量机判决函数进行敏感度分析和对数据源进行子空间划分,然后结合敏感度分析结果和子空间划分结果来实现有效的波段选择。实验证明了这种方法的有效性。 相似文献