首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
一种求支持向量机光滑函数的新方法   总被引:5,自引:0,他引:5  
光滑函数在支持向量机中起着重要作用.用插值函数的方法曾导出了一个求光滑函数的递推公式,然而,用该递推公式求光滑函数还很繁琐.针对该问题,用积分的方法得到了求多项式光滑函数的一个新递推公式.算例表明,用新递推公式求光滑函数比原递推公式简单得多,为研究支持向量机的光滑函数提供了一种新方法.  相似文献   

2.
自训练多项式光滑的半监督支持向量机   总被引:1,自引:0,他引:1  
为了处理自训练半监督支持向量机算法中每次循环都需要求解二次规划因此效率低的问题,采用直接求解支持向量机的原始优化问题,由此得到一个不光滑的无约束优化问题.将正号函数展开为无穷多项式级数,由此得到了一族光滑函数,用多项式光滑函数对无约束优化问题进行逼近,并用共轭梯度算法求解模型.在人工数据和UCI数据集上的实验结果显示,给出的算法效率高,能保证标记样本很少时的分类精度并且不因标记样本的增多而明显提高分类精度.  相似文献   

3.
一种新隶属度函数的模糊支持向量机   总被引:2,自引:0,他引:2  
传统的模糊支持向量机隶属度函数都是基于样本与类中心距离进行设计,这对非球形分布数据很不合理.使用类内超平面代替类中心,提出基于样本到超平面距离的新隶属度函数设计方法.该方法克服传统方法的不足,降低隶属度函数对样本集几何形状的依赖,提高模糊支持向量机的泛化能力.数值实验表明,与支持向量机和三种不同隶属度函数的模糊支持向量机相比,新隶属度函数的模糊支持向量机达到最好的分类效果,而且新隶属度方法的简单易行,计算时间少.  相似文献   

4.
多项式光滑的半监督支持向量分类机   总被引:3,自引:3,他引:0  
为了处理半监督支持向量分类优化中的非凸非光滑问题,引入一族多项式光滑函数来逼近非凸的目标函数,给出的多项式函数在样本的高密度区逼近精度高,逼近精度低时出现在样本的低密度区,同时可以根据不同的精度要求选择不同的逼近函数.采用BFGS算法求解模型.在人工数据和UCI数据集上的实验结果显示,算法不仅能保证标号数据很少时的分类精度,而且不因标号数据的增多而明显提高分类性能,因此给出的分类器性能是稳定的.  相似文献   

5.
一类快速模糊支持向量机   总被引:3,自引:0,他引:3  
由H.P.Huang、C.F.Lin等人和T.Inoue,S.Abe等人提出的两类模糊支持向量机是两种类型的改进支持向量机,分别克服了过学习问题和减少了多类问题分类时存在的不可分区域。如何处理异常数据和加速训练大规模数据集是支持向量机中的急需解决的两个问题。针对这两个问题,提出了一类将两类模糊支持向量机集成的快速模糊支持向量机。训练时,根据每类数据与其类中心的距离,定义隶属函数,以加大对容易被错分样本的惩罚,利用合适的参数λ选取了每类数据中隶属度值较大的边缘数据构造模糊支持向量机,测试时,利用1-a-1和模糊支持向量机的决策函数判定未知样本的类别。含有异常数据的两类问题和机器学习数据集中手写数字识别的多类问题的实验结果,验证了提出的快速模糊支持向量机减少了训练时间同时提高了学习机的推广能力。  相似文献   

6.
训练支持向量机的低维Newton算法   总被引:5,自引:1,他引:5  
支持向量机是基于统计学习理论的结构风险最小化原理提出来的一种新的学习算法,它把模式识别问题建模为一个简单约束的高维对偶二次规划问题.针对原二次规划的特点,线性分类问题可等价化为低维的无约束不可微优化问题,并可通过批处理训练来提高训练速度,降低存储空间复杂度.采用熵罚函数法处理不可微优化问题,对收敛性进行了验证,并提出了Newton型求解算法.数据仿真结果表明,该算法在低存储需求下可有效提高大数据量问题的训练学习速度.  相似文献   

7.
消费者信用评估中支持向量机方法研究   总被引:10,自引:0,他引:10  
消费者信用评估是金融与银行界研究的重要内容,最近的研究显示统计学习理论(SLT)方法在信用评估中有优势。本文在信用评估中应用了一种新的方法——支持向量机方法(SVM),该方法属于机器学习理论发展的最新阶段,具有专门针对有限样本、算法复杂度与样本维数无关等优点。使用真实的信用卡数据实证结果表明,本方法具有较好的预测能力,在与国内某商业银行现有信用卡个人信用评估方法的对比研究中,该方法具有明显的优势。  相似文献   

8.
系统辨识中支持向量机核函数及其参数的研究   总被引:20,自引:4,他引:20  
荣海娜  张葛祥  金炜东 《系统仿真学报》2006,18(11):3204-3208,3226
具有不同核函数和参数的支持向量机(SVM)的性能存在很大差异,核函数及其参数的选择是SVM应用和理论研究中的一个重要问题。在简要介绍非线性系统辨识的支持向量机方法后,重点对常用的核函数及其参数的选择进行了研究,并采用具有不同核函数的SVM进行非线性系境辩识。大量实验结果表明,采用SVM方法进行系统辨识时,径向基核函数(RBKF)比其它核函数的辨识效果好,且RBKF的参数选择较容易,当参数在有效范围内改变时,空间复杂度变化小,易于实现。因此,RBKF是系统辨识SVM的较好选择。  相似文献   

9.
基于支持向量机的中文文本自动分类研究   总被引:2,自引:0,他引:2  
提出了一种基于支持向量机的文本自动分类方法,并进行了实验研究。在详细介绍了进行文本分类的实验过程和在实验中使用支持向量机的方法的基础上,通过实验比较了支持向量机算法和传统的KNN算法应用于文本分类的效果,并针对支持向量机算法的缺点,提出了进行文本预处理时的改进方法。实验结果表明了支持向量机在处理文本分类问题上的优越性。  相似文献   

10.
改进的支持向量回归机   总被引:5,自引:0,他引:5  
标准的支持向量回归机中原始最优化问题的目标函数有两部分:一部分是衡量经验风险的,另一部分是衡量推广能力的。本文引入一个凸函数来代替衡量推广能力的部分,讨论了当这个凸函数取不同的形式时支持向量回归机的变形,这些模型不再要求核函数必须对称正定,从而为我们可以得到更灵活的回归曲面提供了有效的工具。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号