首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Patterns and rates of enamel growth in the molar teeth of early hominids   总被引:3,自引:0,他引:3  
A D Beynon  B A Wood 《Nature》1987,326(6112):493-496
A recent study of the surface manifestation of incremental lines associated with enamel formation suggested that the crowns of early hominid incisor teeth were formed more rapidly than those of modern humans. In the absence of comparative data, the authors were forced to assume that enamel increments in fossil teeth were similar to those in modern humans. We have used evidence from the fractured surfaces of molar teeth to deduce estimates for both long- and short-period incremental growth markers within enamel in east African 'robust' australopithecine and early Homo teeth. We conclude that in these early hominids, crown formation times in posterior teeth, particularly in the large thick enamelled molar teeth of the east African 'robust' australopithecines, were shorter than those of modern humans. This evidence, considered together with data on crown and root formation times in modern apes, suggests that the posterior teeth in these hominids both formed and erupted more rapidly than those of modern man. These results have implications for attempts to assess dental and skeletal maturity in hominids.  相似文献   

2.
Life-history traits correlate closely with dental growth, so differences in dental growth within Homo can enable us to determine how somatic development has evolved and to identify developmental shifts that warrant species-level distinctions. Dental growth can be determined from the speed of enamel formation (or extension rate). We analysed the enamel extension rate in Homo antecessor (8 teeth analysed), Homo heidelbergensis (106), Homo neanderthalensis ('Neanderthals'; 146) and Upper Palaeolithic-Mesolithic Homo sapiens (100). Here we report that Upper Palaeolithic-Mesolithic H. sapiens shared an identical dental development pattern with modern humans, but that H. antecessor and H. heidelbergensis had shorter periods of dental growth. Surprisingly, Neanderthals were characterized by having the shortest period of dental growth. Because dental growth is an excellent indicator of somatic development, our results suggest that Neanderthals developed faster even than their immediate ancestor, H. heidelbergensis. Dental growth became longer and brain size increased from the Plio-Pleistocene in hominid evolution. Neanderthals, despite having a large brain, were characterized by a short period of development. This autapomorphy in growth is an evolutionary reversal, and points strongly to a specific distinction between H. sapiens and H. neanderthalensis.  相似文献   

3.
Coqueugniot H  Hublin JJ  Veillon F  Houët F  Jacob T 《Nature》2004,431(7006):299-302
Humans differ from other primates in their significantly lengthened growth period. The persistence of a fetal pattern of brain growth after birth is another important feature of human development. Here we present the results of an analysis of the 1.8-million-year-old Mojokerto child (Perning 1, Java), the only well preserved skull of a Homo erectus infant, by computed tomography. Comparison with a large series of extant humans and chimpanzees indicates that this individual was about 1 yr (0-1.5 yr) old at death and had an endocranial capacity at 72-84% of an average adult H. erectus. This pattern of relative brain growth resembles that of living apes, but differs from that seen in extant humans. It implies that major differences in the development of cognitive capabilities existed between H. erectus and anatomically modern humans.  相似文献   

4.
MG Leakey  F Spoor  MC Dean  CS Feibel  SC Antón  C Kiarie  LN Leakey 《Nature》2012,488(7410):201-204
Since its discovery in 1972 (ref. 1), the cranium KNM-ER 1470 has been at the centre of the debate over the number of species of early Homo present in the early Pleistocene epoch of eastern Africa. KNM-ER 1470 stands out among other specimens attributed to early Homo because of its larger size, and its flat and subnasally orthognathic face with anteriorly placed maxillary zygomatic roots. This singular morphology and the incomplete preservation of the fossil have led to different views as to whether KNM-ER 1470 can be accommodated within a single species of early Homo that is highly variable because of sexual, geographical and temporal factors, or whether it provides evidence of species diversity marked by differences in cranial size and facial or masticatory adaptation. Here we report on three newly discovered fossils, aged between 1.78 and 1.95 million years (Myr) old, that clarify the anatomy and taxonomic status of KNM-ER 1470. KNM-ER 62000, a well-preserved face of a late juvenile hominin, closely resembles KNM-ER 1470 but is notably smaller. It preserves previously unknown morphology, including moderately sized, mesiodistally long postcanine teeth. The nearly complete mandible KNM-ER 60000 and mandibular fragment KNM-ER 62003 have a dental arcade that is short anteroposteriorly and flat across the front, with small incisors; these features are consistent with the arcade morphology of KNM-ER 1470 and KNM-ER 62000. The new fossils confirm the presence of two contemporary species of early Homo, in addition to Homo erectus, in the early Pleistocene of eastern Africa.  相似文献   

5.
6.
Ponce de León MS  Zollikofer CP 《Nature》2001,412(6846):534-538
Homo neanderthalensis has a unique combination of craniofacial features that are distinct from fossil and extant 'anatomically modern' Homo sapiens (modern humans). Morphological evidence, direct isotopic dates and fossil mitochondrial DNA from three Neanderthals indicate that the Neanderthals were a separate evolutionary lineage for at least 500,000 yr. However, it is unknown when and how Neanderthal craniofacial autapomorphies (unique, derived characters) emerged during ontogeny. Here we use computerized fossil reconstruction and geometric morphometrics to show that characteristic differences in cranial and mandibular shape between Neanderthals and modern humans arose very early during development, possibly prenatally, and were maintained throughout postnatal ontogeny. Postnatal differences in cranial ontogeny between the two taxa are characterized primarily by heterochronic modifications of a common spatial pattern of development. Evidence for early ontogenetic divergence together with evolutionary stasis of taxon-specific patterns of ontogeny is consistent with separation of Neanderthals and modern humans at the species level.  相似文献   

7.
Remains of Homo erectus from Bouri, Middle Awash, Ethiopia   总被引:5,自引:0,他引:5  
The genesis, evolution and fate of Homo erectus have been explored palaeontologically since the taxon's recognition in the late nineteenth century. Current debate is focused on whether early representatives from Kenya and Georgia should be classified as a separate ancestral species ('H. ergaster'), and whether H. erectus was an exclusively Asian species lineage that went extinct. Lack of resolution of these issues has obscured the place of H. erectus in human evolution. A hominid calvaria and postcranial remains recently recovered from the Dakanihylo Member of the Bouri Formation, Middle Awash, Ethiopia, bear directly on these issues. These approximately 1.0-million-year (Myr)-old Pleistocene sediments contain abundant early Acheulean stone tools and a diverse vertebrate fauna that indicates a predominantly savannah environment. Here we report that the 'Daka' calvaria's metric and morphological attributes centre it firmly within H. erectus. Daka's resemblance to Asian counterparts indicates that the early African and Eurasian fossil hominids represent demes of a widespread palaeospecies. Daka's anatomical intermediacy between earlier and later African fossils provides evidence of evolutionary change. Its temporal and geographic position indicates that African H. erectus was the ancestor of Homo sapiens.  相似文献   

8.
Rich paleoanthropological materials were unearthed in primary context from the Xinglongdong Cave in Fengjie County, Chongqing, South China, including a human tooth, numerous mammalian fossils, some stone artifacts and a Stegodon tusk exhibiting intentional engravings.Based on biostratigraphic data and uranium series dating,the cave was utilized as a human shelter about 120000-150000 years ago. It is the first time that an archaic Homo sapiens fossil has been unearthed from the Three Gorges Region. Engravings on the Stegodon tusk appear in groups,making up simple and abstract images. It is the earliest known engravings created by human beings; it exhibits great potential for the study of the origin of art and the development of ancient cultures in south China and bears important implications for the origin of modern humans in East Asia.  相似文献   

9.
The human fossil assemblage from the Mladec Caves in Moravia (Czech Republic) has been considered to derive from a middle or later phase of the Central European Aurignacian period on the basis of archaeological remains (a few stone artefacts and organic items such as bone points, awls, perforated teeth), despite questions of association between the human fossils and the archaeological materials and concerning the chronological implications of the limited archaeological remains. The morphological variability in the human assemblage, the presence of apparently archaic features in some specimens, and the assumed early date of the remains have made this fossil assemblage pivotal in assessments of modern human emergence within Europe. We present here the first successful direct accelerator mass spectrometry radiocarbon dating of five representative human fossils from the site. We selected sample materials from teeth and from one bone for 14C dating. The four tooth samples yielded uncalibrated ages of approximately 31,000 14C years before present, and the bone sample (an ulna) provided an uncertain more-recent age. These data are sufficient to confirm that the Mladec human assemblage is the oldest cranial, dental and postcranial assemblage of early modern humans in Europe and is therefore central to discussions of modern human emergence in the northwestern Old World and the fate of the Neanderthals.  相似文献   

10.
F Brown  J Harris  R Leakey  A Walker 《Nature》1985,316(6031):788-792
The most complete early hominid skeleton ever found was discovered at Nariokotome III, west Lake Turkana, Kenya, and excavated in situ in sediments dated close to 1.6 Myr. The specimen, KNM-WT 15000, is a male Homo erectus that died at 12 +/- 1 years of age, as judged by human standards, but was already 1.68 m tall. Although human-like in many respects, this specimen documents important anatomical differences between H. erectus and modern humans for the first time.  相似文献   

11.
 2017年国际古生物研究取得了一系列重要进展。本文介绍地球早期生命研究、最古老树木生长模式、生物宏演化、琥珀中的特异保存化石、三维翼龙胚胎、最早的智人等具体成果,希望由此反映国际古生物研究领域的前沿热点及中国古生物学界所做的突出贡献。  相似文献   

12.
Sites in eastern Africa have shed light on the emergence and early evolution of the genus Homo. The best known early hominin species, H. habilis and H. erectus, have often been interpreted as time-successive segments of a single anagenetic evolutionary lineage. The case for this was strengthened by the discovery of small early Pleistocene hominin crania from Dmanisi in Georgia that apparently provide evidence of morphological continuity between the two taxa. Here we describe two new cranial fossils from the Koobi Fora Formation, east of Lake Turkana in Kenya, that have bearing on the relationship between species of early Homo. A partial maxilla assigned to H. habilis reliably demonstrates that this species survived until later than previously recognized, making an anagenetic relationship with H. erectus unlikely. The discovery of a particularly small calvaria of H. erectus indicates that this taxon overlapped in size with H. habilis, and may have shown marked sexual dimorphism. The new fossils confirm the distinctiveness of H. habilis and H. erectus, independently of overall cranial size, and suggest that these two early taxa were living broadly sympatrically in the same lake basin for almost half a million years.  相似文献   

13.
Since the 1950s, researchers who examine the issue of human beginnings often turn to Africa where there is a picture of human origins and evolution based on African hominid fossils with ages that are constantly revised to be older and older. However, there are many other unsolved problems about early human origins and evolution that may be solved by looking outside Africa. Over seventy years ago, Asia was described as a dispersal center of the earliest human industry, and a key arena for huma…  相似文献   

14.
Clarifying the geographic, environmental and behavioural contexts in which the emergence of anatomically modern Homo sapiens occurred has proved difficult, particularly because Africa lacked adequate geochronological, palaeontological and archaeological evidence. The discovery of anatomically modern Homo sapiens fossils at Herto, Ethiopia, changes this. Here we report on stratigraphically associated Late Middle Pleistocene artefacts and fossils from fluvial and lake margin sandstones of the Upper Herto Member of the Bouri Formation, Middle Awash, Afar Rift, Ethiopia. The fossils and artefacts are dated between 160,000 and 154,000 years ago by precise age determinations using the 40Ar/39Ar method. The archaeological assemblages contain elements of both Acheulean and Middle Stone Age technocomplexes. Associated faunal remains indicate repeated, systematic butchery of hippopotamus carcasses. Contemporary adult and juvenile Homo sapiens fossil crania manifest bone modifications indicative of deliberate mortuary practices.  相似文献   

15.
Pleistocene Homo sapiens from Middle Awash,Ethiopia   总被引:10,自引:0,他引:10  
White TD  Asfaw B  DeGusta D  Gilbert H  Richards GD  Suwa G  Howell FC 《Nature》2003,423(6941):742-747
The origin of anatomically modern Homo sapiens and the fate of Neanderthals have been fundamental questions in human evolutionary studies for over a century. A key barrier to the resolution of these questions has been the lack of substantial and accurately dated African hominid fossils from between 100,000 and 300,000 years ago. Here we describe fossilized hominid crania from Herto, Middle Awash, Ethiopia, that fill this gap and provide crucial evidence on the location, timing and contextual circumstances of the emergence of Homo sapiens. Radioisotopically dated to between 160,000 and 154,000 years ago, these new fossils predate classic Neanderthals and lack their derived features. The Herto hominids are morphologically and chronologically intermediate between archaic African fossils and later anatomically modern Late Pleistocene humans. They therefore represent the probable immediate ancestors of anatomically modern humans. Their anatomy and antiquity constitute strong evidence of modern-human emergence in Africa.  相似文献   

16.
The Liujiang cranium is the most complete and well-preserved late Pleistocene human fossils ever unearthed in south China. Because the endocranial cavity is filled with hard stone matrix, earlier studies focused only on the exterior morphology of the specimen using the traditional methods. In order to derive more information for the phyletic evaluation of the Liujiang cranium, high-resolution industrial computed tomography (CT) was used to scan the fossil, and the three-dimensional (3D) brain image was reconstructed. Compared with the endocasts of the hominin fossils (Hexian, Zhoukoudian, KNM-WT 15000, Sm 3, Kabwe, Brunn 3, Predmost) and modern Chinese, most morphological features of the Liujiang brain are in common with modern humans, including a round brain shape, bulged and wide frontal lobes, an enlarged brain height, a full orbital margin and long parietal lobes. A few differences exist between Liujiang and the modern Chinese in our sample, including a strong posterior projection of the occipital lobes, and a reduced cerebellar lobe. The measurement of the virtual endocast shows that the endocranial capacity of Liujiang is 1567 cc, which is in the range of Late Homo sapiens and much beyond the mean of modern humans. The brain morphology of Liujiang is assigned to Late Homo sapiens.  相似文献   

17.
The Tianyuan Cave is the only human fossil-bearing site containing rich mammalian fossils found in the last decades near Zhoukoudian. Up to now more than 34 specimens of the human body have been recovered, and the mammalian fossils can be put into 29 species. Cervids dominate the fauna, and carnivores are very rare. Based on the primary examination, the human fossils can be attributed to the species Homo sapiens. All the mammalian fossils, except one between tooth of Crocuta belong to the species that still exist today. But some of them are the first records in fossil form north of the Yellow River, such as Arctonyx and Capricornis. Based on the mammalian fauna study, it seems that the Tianyuan Cave can be correlated with the Upper Cave.Sixty-three percent of the species of the mammalian fauna from the Tianyuan Cave are also present in the Upper Cave.The characters of the deposits also share some similarities between the Tianyuan Cave and the Upper Cave; both of them are mainly composed of breccia without cement. The dating using the U-series method on deer tooth samples indicates that the geological age of the new site is around 25 thousand years B.P. This is the first discovery of human sites outside the core area of the Peking Man Site at Zhoukoudian,which throws new light onto this world famous site complex.  相似文献   

18.
通过对南京汤山猿人洞穴内部东侧地质雷达勘探资料的分析,得出东部洞穴基岩埋深在10m以下,为水平状的岩系.其上的洞穴埋藏堆积可以分为上、中、下3个角砾层,反映了该洞穴曾经历过3次较大的崩塌堆积过程.上角砾层可能含有动物化石,是今后考古值得关注的堆积层.  相似文献   

19.
B Wood 《Nature》1992,355(6363):783-790
It is remarkable that the taxonomy and phylogenetic relationships of the earliest known representatives of our own genus, Homo, remain obscure. Advances in techniques for absolute dating and reassessments of the fossils themselves have rendered untenable a simple unilineal model of human evolution, in which Homo habilis succeeded the australopithecines and then evolved via H. erectus into H. sapiens-but no clear alternative consensus has yet emerged.  相似文献   

20.
One of the most hotly debated and frontal issues in paleoanthropology focuses on the origins of modern humans. Recently, an incomplete hominin mandible with a distinctly weaker mental protuberance than modern human and a great variety of coexisting fossil mammals were unearthed from the Homo sapiens Cave of Mulan Mountain, Chongzuo, Guangxi. The mammalian fauna from the Homo sapiens Cave characterized by the combination of Elephas kiangnanensis, first occurring Elephas maixmus, and Megatapirus augustus, and strikingly different from the Early Pleistocene Gigantopithecus fauna and the Middle Pleistocene Ailuropoda-Stogodon fauna of South China could be regarded as an early representive of the typical Asian elephant fauna. Faunal analysis, biostratigraphic correlation, and, most importantly, U-series dating all consistently support an estimate of ca. 110 ka for the age of the fossil Homo sapiens and coexisting mammalian fauna, that is, the early Late Pleistocene. The fauna is mainly made up of tropical-subtropical elements, but grassland elements have a much greater variety than forest elements, which probably indicates a drier climate at that time. This discovery of early Homo sapiens at the Mulan Mountain will play a significant role in the study of the origin and its environmental background of modern humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号