共查询到19条相似文献,搜索用时 78 毫秒
1.
基于二叉树的SVM多类分类算法研究 总被引:3,自引:0,他引:3
支持向量机是一种高效的分类识别方法,在解决高维模式识别问题中表现出许多特有的优势.支持向量机本身是一个两类问题的判别方法,不能直接应用于多类问题.介绍了基于二叉树的SVM多类分类算法,通过对其原理和实现方法的分析,对这些方法的优缺点进行了归纳和总结,给出了进一步的研究方向. 相似文献
2.
本文提出了基于分离程度的SVM决策树的焊缝缺陷分类识别方法。首先对X射线焊缝图像进行缺陷特征提取,然后结合聚类的思想,定义了分离程度,每次将分离程度最大的缺陷类分离出来,成功解决了传统欧氏距离不能处理的类交叉分类情况,得到了累积误差更小的决策树。将基于分离程度的二叉树的多类SVM算法运用于X射线焊接缺陷图像的分类识别,通过计算机仿真,表明该方法比其它SVM多分类算法在分类精度和识别效果方面有明显的提高。 相似文献
3.
基于核函数的最大间隔聚类算法 总被引:8,自引:0,他引:8
提出了基于最优超平面与支持向量机思想的最大间隔聚类算法。该方法借鉴了最优超平面思想和用核函数非线性映射构造支持向量机的思想。通过构造一个二次规划问题 ,得到了使分类后两类间距最大的聚类方法 ,并且借助非线性核函数将该方法推广到非线性情况。仿真试验表明 :该方法可以较好地解决很多非监督分类问题 ,得到的结果基本不受数据分布形状的影响 相似文献
4.
改进传统的基于二叉树结构的支持向量机多类分类方法。将无监督聚类引入到算法中,利用无监督聚类剔除大量的非支持向量样本,同时对于无监督聚类在异类样本相近时出现的性能下降问题,引入线性判别分析使得同类样本聚集,异类样本分散,确保聚类精度。线性判别分析和无监督聚类结合能够显著地缩减训练样本。该方法能够在保持分类准确率的情况下有效地提高SVM的分类速度。 相似文献
5.
提出一种基于双支持向量机的偏二叉树多类分类算法,偏二叉树双支持向量机多类分类算法.该算法综合了二叉树支持向量机和双支持向量机的优势,实现了在不降低分类性能的前提下,大大缩短训练时间.理论分析和UCI(University of California Irvine)机器学习数据库数据集上的实验结果共同证明,偏二叉树双支持... 相似文献
6.
为解决油层识别中存在的获得有标记数据的代价过高,有标记数据稀少的问题,提出一种新的基于分支定界的半监督支持向量机(branch and bound for semi-supervised support vector machine,BBS3VM)的油层识别方法。此方法主要将半监督学习(semi-supervised learning, SSL)和分支定界的思想引入到支持向量机(support vector machine, SVM)分类算法中。通过半监督学习的思想,使用大量未标记的样本来改善学习性能,利用分支定界算法提高半监督支持向量机(semi-supervised support vector machine,S3VM)算法的分类精度,将此改进算法应用于测井数据挖掘中的油层识别。经过对某油田的实际测井资料进行处理,实验结果表明,半监督油层识别方法要优于传统的S3VM分类算法,识别率更高,分类效果更显著,与全监督的SVM算法相比较,得到相差不大的分类精度的同时,速度更快。 相似文献
7.
支持向量机在分类中的推广能力是非常显著的.通过构造目标函数和约束条件,借助二次规划模型提出了一种无监督支持向量机,它能在聚类的同时求出最优分类超平面并保证了支持向量机的推广能力. 相似文献
8.
针对模糊c均值聚类算法的一些不足之处提出了一种新的均值漂移聚类算法--无监督多尺度聚类算法.该算法不受初始化的影响,不用假定数据的聚类个数以及聚类中心的初始位置,能够利用模糊聚类的方法来获得硬的聚类划分,能够从不同的"划分尺度"揭示数据的聚类结构,并能自动的确定聚类个数.为了满足处理大数据集的需要,设计了快速无监督多尺度模糊聚类算法.通过实验证明无监督多尺度聚类算法在多数数据集上都表现良好且具有最好的总体聚类性能,并能成功揭示出数据的聚类结构.实验还证明快速无监督多尺度模糊聚类算法具有较快的速度和较高的识别精度且适用于大数据集.2个算法都取得了令人满意的实验结果. 相似文献
9.
通过对设置在不同地形的监测设备所采集的地空通信信号研究发现,其音频信号可作为识别地空通信干扰信号的研究对象,但音频信号特征通常是基于短时间域上的,无法直接应用在识别过程中。故提出利用K-均值聚类算法构建地空通信干扰音频信号的特征集合,并将通过遍历选择参数的支持向量机作为分类器用于地空通信干扰音频信号识别。实验表明,该方法可以很好地表现出音频信号的统计特性,快速、高效地识别出不同的地空通信干扰信号。 相似文献
10.
提出了多目标监督聚类GA算法,即:根据样本的类标签有监督地将样本聚类,在每个类中根据样本属性的相似性有监督地聚成类簇.如果分属不同类标签的类簇出现相交,则相交类簇再次聚类,直到所有类簇均不相交.适应度矢量函数由类簇数和类内距离2个目标确定,类簇数和类簇中心由目标函数自动确定,从而类簇数和中心就不受主观因素的影响,并且保证了这2个关键要素的优化性质.预测分类时,删去单点类簇,并根据类簇号和离某个类簇中心距离的最近邻法则以及该类簇的类标签进行分类.算法模型采用C#实现,采用3个UCI数据集进行实例分析,实验结果表明,本算法优于著名的Native Bayes、Boost C4.5和KNN算法. 相似文献
11.
针对人脸识别问题,提出一种基于奇异值分解特征提取和改进的二叉树支持向量机实现多分类的人脸识别方法。在使用改进的二叉树支持向量机对不同人脸图像的奇异特征向量进行分类时,先利用Mercer核,将输入空间非线性可分的训练样本映射到高维特征空间Hilbert中,使之线性可分,将类超球体半径分解成核心半径和最小半径,通过两者加权计算最终的类超球体决策半径,并以此半径大小为依据生成二叉树结构。在ORL人脸数据库的仿真结果表明,该算法能有效提高人脸识别性能,具有较高识别率。 相似文献
12.
针对脱机手写体汉字特征复杂和类别多样的特点,基于SVM数学模型,采用了一种不确定性二叉树与SVM相结合的分类识别方法设计了一种多类分类器,该设计方法在保证识别准确率的情况下大大减少了支持向量机的数量,简化了二叉树模型,能快速辨识并删除多余的枝节,并具有一定的容错率,加快了辨识速度。实验结果表明,采用不确定性二叉树SVM设计的多类分类器有效地降低了拒识率和漏识率,保证了识别的准确率,提高了识别速度。 相似文献
13.
为有效提高语音情感识别的准确性,达到人机和谐交互的目的,本文提出了一种基于决策树和改进SVM混合模型的语音情感识别方法,有效地避免了无界泛化误差、分类器数目多、受限优化等问题,提高了悲伤、喜悦、愤怒、厌恶、惊讶、恐惧6种基本情感识别效率。实验结果表明,该方法识别准确率为87.58%,与传统的支持向量机和人工神经网络方法相比,有更高的抗噪声能力和稳定性,能得到更高的识别准确率,而且有较强的实用性和推广能力。 相似文献
14.
以SAR图像中城市目标为研究对象,从当前实际需要出发,分析了城市目标的特点,归纳了城市目标各组成要素的识别特征,总结了城市目标的判读方法,并对城市目标的综合应用进行了分析。 相似文献
15.
基于最优二叉树的多故障分类器的设计 总被引:3,自引:0,他引:3
在分析常见多故障分类器的基础上,提出了基于故障优先级和核函数的聚合技术,利用这个方法生成一个基于最优二叉树的多故障分类器.该分类器是通过核函数具有将非线性问题线性化的特点生成聚类函数,然后通过各个故障的优先级生成最优二叉树.最后将此分类器应用在挖掘机故障诊断中.应用结果表明,此分类器不但能够保证故障诊断的正确率,而且可以让后果较严重的故障得到优先诊断. 相似文献
16.
一种新的基于支持向量机的自动调制识别方案 总被引:1,自引:0,他引:1
为了解决在合作或非合作的通信应用领域中(如软件无线电,电子侦察系统等)多种调制信号之间的切换问题,提出1种基于多类别支持向量机(SVM)的模拟和数字信号的调制识别的新方案。SVM将特征向量非线性地映射到高维特征空间中,并建立1个最优超平面来实现信号调制方式的分类。这种方法避免了在人工神经网络中的过学习、欠学习以及局部最小化的问题。仿真中将应用于调制识别的SVM算法与人工神经网络算法(ANN)做了比较,结果表明SVM自动调制识别方法结构简单,识别率高,解决小样本的能力强,在信噪比SNR不低于5dB时,正确识别率达到94%以上,适于在工程中应用。 相似文献
17.
对数据库进行调整与优化时,负载的类型是要考虑的一个关键因素。不同的负载类型(联机事务处理OLTP和联机分析处理OLAP),意味着不同的资源分配策略。在系统运行中,负载的类型是经常变化的。把基于支持向量机的分类模型用于数据库负载类型的自动识别中,实验结果表明,该分类模型是可行的,达到了令人满意的准确度以及关于负载识别的四个特殊要求。 相似文献
18.
提出了基于哈夫曼树的支持向量机多分类方法,该方法首先将1个多分类问题分解为多个2分类问题,针对每个2分类问题使用支持向量机2分类方法解决;然后根据相异度来决策分类的优先顺序,构建基于哈夫曼树的支持向量机多分类模型;最后使用勒卡斯开源数据集进行验证,并将它与传统的支持向量机多分类方法进行实验比较。实验结果表明:新的方法在分类速度和分类精度上较传统的支持向量机多分类方法优越。 相似文献
19.
一种有效的SAR图象典型目标特征提取和识别方法 总被引:1,自引:1,他引:1
在合成孔径雷达(SAR)图象中,需要对其中的人工和自然目标进行识别和分类,目标的特征提取是自动目标识别系统中的关键部分.一般图象的特征会采用颜色、纹理、形状等特征量.在SAR图象中,由于存在大量的背景噪声、目标边界模糊等问题,造成以上特征量在分类时往往不能达到很好的分类效果.作者提出了一种典型目标特征提取和分类识别方法、这种方法基于SAR成像的原理,在图象灰度阂值分割后做粗搜索分别提取灰度特征,椭圆矢量特征,以及栅格特征,然后进行SAR图象典型目标的分类识别、实验表明,这种方法效果较好. 相似文献