首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
针对压缩感知可解释性的问题,首先回顾了基于深度学习的压缩感知方法发展历程及存在问题,阐述了算法展开方法的研究背景和重要意义,并对主流的算法展开网络及特点进行分析总结;然后根据传统迭代算法,将算法展开网络进行分类,并选择三个具有代表性的算法,分别为迭代收缩阈值算法、近似消息传递算法和交替方向乘子法,概述其相应的原理,分析这三种算法的网络展开方式、网络特点和实验仿真效果;最后从具体展开方式的设计、展开网络的理论分析和展开网络在资源受限平台下的实施这三方面,探讨了可解释性压缩感知领域中算法展开技术存在的问题和下一步研究的方向.  相似文献   

2.
针对压缩感知理论中测量矩阵硬件实现与重构性能问题,提出一种深度学习方法来获得稀疏的三元测量压缩感知.该方法构建了非常稀疏的三元{0, 1,-1}观测矩阵,在所提出的网络架构上施加稀疏性和二元约束,用更少的观测值满足高概率的图像重构保证,解决了硬件限制和重构性能要求.该文深度学习架构以端到端的方式,提出的网络架构在训练阶段共同学习一对测量矩阵和重建算子,优化线性传感过程和非线性重构过程.实验表明:该文方法在5%非零元素测量矩阵条件下,图像重建质量优于现有方法,说明该文方法具有可行性与有效性.  相似文献   

3.
4.
基于语音信号在离散余弦基下的近似稀疏性,对语音信号采用压缩感知技术进行压缩和重构,研究了分析窗长固定时重构误差与观测点数的关系, 针对低压缩比下重构信号"noisy"的特性,提出对重构信号进行小波去噪联合低通滤波的方法以改善重构语音的质量,并研究了低压缩比下分析窗长对重构信号质量的影响.仿真结果表明低压缩比下,合理选取分析窗长,并采用小波去噪联合低通滤波的处理方法可以明显改善重构语音的质量.  相似文献   

5.
压缩感知理论为信号采集技术带来了革命性的突破,它采用非自适应线性投影来保持信号的原始结构,以远低于奈奎斯特频率对信号进行采样,通过数值最优化问题准确重构出原始信号。分析了信号的稀疏表示、压缩感知的基本理论,设计了两种主要的重构算法——匹配跟踪算法、互补匹配跟踪算法,并对两种算法的特点进行了对比。  相似文献   

6.
近年来提出的多示例学习算法在一定程度上能够克服模板漂移问题。然而,在线学习需要获取足够多的有用数据才能达到稳定的追踪效果,但是这却增加了算法的复杂度。为了解决这一问题,在压缩感知理论的基础上,运用随机观测的方法对多尺度图像特征进行降维,提取的这些低维特征中包含大量的有用信息。因此,我们提出的算法是先利用压缩感知理论提取目标特征之后,再使用在线多示例学习算法分类器对这些特征进行分类从而实现目标的稳定跟踪。通过对不同的图像序列进行实验,结果表明基于压缩感知的在线多示例学习算法对实时的目标追踪有很好的适应性。  相似文献   

7.
为了解决有限带宽电力线通信链路传输大量的智能电表数据时产生的时延或准确性问题。使用了压缩感知方法对智能电表数据进行压缩与重构。首先智能电表数据通过测量矩阵压缩成测量值,然后再通过电力线通信链路进行传输,最后在控制中心使用合适的重构算法恢复智能电表数据。仿真结果表明了所提的方法能大幅减少传输数据的维度。  相似文献   

8.
语音压缩感知及其重构算法   总被引:1,自引:0,他引:1  
在研究语音信号在小波域的稀疏性的基础上,提出双正交小波变换的方法,与一维小波变换方法相比稀疏度提高10%~25%.此外,提出基于自适应次梯度投影算法(ASPM)进行压缩感知(CS)语音信号重构的方案.ASPM算法首先根据压缩感知重构模型建立包含稀疏重构信号并具有随机属性的凸集,然后运用次梯度投影的思想将该凸集的投影转化...  相似文献   

9.
多声道环绕声技术的发展和应用对音频信号的存储、传输和处理提出了新的要求.为了在显著降低音频数据量的同时保障多声道环绕声的质量,将多声道音频技术与压缩感知技术(CS)相结合,分别提出二维和一维两种CS重构方案来对多声道音频数据进行采样和重构.此外,针对低CS采样率的情况,提出了一种可以改进CS重构信号质量的新算法.实验结果表明,新算法不仅能显著提高音频信号的重构质量还能大大缩短重构时间,尤其在低采样率时提升显著.  相似文献   

10.
刘俊梅  马永刚 《河南科学》2020,38(11):1732-1736
为了降低随机观测矩阵的存储空间,给出一种基于半张量积的正交匹配追踪重构算法.该方法利用半张量积理论,修正压缩感知模型,构造低维观测矩阵对原始信号进行随机观测,并采用正交匹配追踪算法对信号进行重构,从而得到稀疏信号的估计值.仿真实验分别采用1维时域稀疏信号、1维变换域稀疏信号进行测试,并从重构误差、重构概率、重构时间等角度进行了测试.给出的算法可以大大降低观测矩阵的存储空间,也可以降低数据运算复杂度,在压缩感知中可以得到广泛应用.  相似文献   

11.
图像隐含的低秩先验特性已被成功应用于去噪等图像恢复应用.考虑到自然图像具有的非平稳特性以及迭代重构中图像噪声强度的变化,提出了一种结合近似消息传递与自适应低秩去噪的图像压缩感知重构方法.根据迭代重构图像的噪声方差估计,自适应地调整分块图像的大小以及相似块组的规模,实现低秩去噪性能的有效提升,从而保证了迭代重构的收敛速度,并同时改善了重构图像的质量.大量实验结果表明:该方法在无噪和有噪观测环境下都具有较好的重构性能,且能够有效地保留图像的纹理细节信息.  相似文献   

12.
压缩感知理论被广泛应用于从少量随机观测中精确地重构原始信号,基于压缩感知理论来实现图像的超分辨率重建,在利用图像的局部稀疏性先验的基础上,采取了以下两项措施:一是通过对图像降质模型的估计,采用K-奇异值分解(K-singular value decomposition, K-SVD)算法构建过完备字典对,依据同一图像高低分辨率观测在对应字典下稀疏表示系数相似的特点,将字典对所表示的高低分辨率图像间的映射关系带入目标函数中,避免了降采样和模糊算子难以抽象为矩阵形式对求解造成的影响;二是在待超分辨率图像稀疏编码时提出一种自适应加权的梯度投影稀疏重构(adaptive weighting gradient projection for sparse reconstruction, AWGPSR)算法,克服了传统正交匹配追踪(orthogonal matching pursuit, OMP)算法在这一步需要固定稀疏度的缺陷,可获得更加精确的稀疏表示系数。结合得到的稀疏表示系数与高分辨率字典可以重建出图像的高频分量,将重建的高频分量与低频部分融合可以得到最终的图像超分辨率重建结果。实验结果表明,...  相似文献   

13.
Residual learning based deep generative networks have achieved promising performance in image enhancement.However,due to the large color gap between a low-quality image and its highquality version,the identical mapping in conventional residual learning cannot explore the elaborate detail differences,resulting in color deviations and texture losses in enhanced images.To address this issue,an innovative non-identical residual learning architecture is proposed,which views image enhancement as two c...  相似文献   

14.
由单个图像建立其三维模型是计算机视觉领域的一个热门且具有挑战性的问题.现有的传统单视图三维重构算法在处理低分辨率图像时效果不好,在训练中由于三维图形的高维性,使网络也变得高度不稳定,导致模型重构效果差.针对传统三维重构算法存在的缺点,提出一种基于深度学习网络的改进模型,在模型中加入超分辨率、投影、对抗生成网络(gene...  相似文献   

15.
潮滩作为陆海交互区,面积宽广,测量困难,历史地形资料缺失,已经严重影响到潮滩的开发利用。以辐射沙脊群潮滩为实验区,利用1987年前后的TM、MSS影像提取不同潮情下的系列水边线,运用Mike21水动力模型模拟遥感图像对应时刻下的瞬时海面高度,为水边线赋值,进而通过地形反复迭代得到数字高程模型。结果表明,在辐射沙脊群潮滩区,水边线法获取的地形结果与海图上测点的相关性较高,决定系数R~2达0.864,绝对平均误差0.37 m,均方根误差0.41 m,地形结果可用于进一步的潮滩地貌演变分析。  相似文献   

16.
压缩传感以低采样率、抗干扰性强等特点备受关注。在图像能够稀疏表示的先验条件下,可以通过较少的随机投影,就能对原始图像进行精确重构。本文将Curvelet阈值收缩和共轭梯度相结合进行压缩传感重构,克服了正交小波方向选择性差,传统重构算法需要内存大、收敛速度慢、重构图像的细节与平滑不能兼备的缺点。实验结果表明,该算法提高了重构图像的峰值信噪比,加快了收敛速度,平衡了图像的细节与平滑成分。  相似文献   

17.
提出利用视觉显著性指导图像压缩感知的自适应测量与重建的算法.考虑到感知端不可负载过多的计算量,采用亮度对比度计算输入全采样图像的显著度,并根据块显著度实现自适应测量;重建端利用动态变化的块测量率重新估算块显著度,并以此加权重建模型的目标函数,集中优化高显著块.实验结果表明:与传统算法相比,所提算法重建图像的整体客观质量更优,且可更好地保护边缘与纹理等重要细节,主观视觉质量良好,同时保证了较低的测量与重建计算复杂度.  相似文献   

18.
19.
利用神经网络将电磁逆散射问题与多尺度方法相结合,通过将散射场的场强数值输入多尺度融合模型中进行不断训练,实现目标的定位与重构. 对于目标区域内的手写数字散射体,首先利用Lenet网络模型定位目标散射体所在的区域;然后将散射体所在的区域进一步通过SmaAt-UNet神经网络学习,训练重构散射体的形状,进而确定该数字,不同的模型负责提取不同的特征;最后将特征融合在一起,以增强最终结果的表征能力.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号