共查询到15条相似文献,搜索用时 93 毫秒
1.
王小欧 《长春师范学院学报》2014,(1):40-44
将分块理论与2DPCA方法相结合,研究分块二维主成分分析法(M-2DPCA)在人脸识别中的应用.对人脸图像矩阵进行分块,用形成的子图像矩阵直接构造总体散布矩阵并求解对应的特征向量,利用提取的特征向量对图像进行特征的提取与分析,进行人脸识别.基于Yale人脸数据库的实验显示,在相同训练样本和特征向量条件下,M-2DPCA... 相似文献
2.
提出了一种基于二维小波分解和融合多特征的2DPCA(简称MMP-2DPCA)人脸识别方法.该方法对于人脸表情变化不敏感,能够很好地压缩和表征原始人脸图像;融合图像既能反映人脸的全局特征,又能反映人脸的局部特征,具有更强的表达能力和判别能力.在ORL人脸库上的实验表明:MMP-2DPCA方法具有有效性. 相似文献
3.
结合半监督学习中的自学习技术以及二维主成分分析(two-dimensional principal component analysis-2DPCA)方法,提出了一种基于半监督学习的人脸识别方法.在二维主成分分析的基础上,利用少量具有类别标签的样本训练分类器,然后利用半监督学习中的自学习技术,对未知类别标签的人脸样本进行分类,并将具有高置信度的人脸样本加入到训练集中,以此增加训练集中的人脸样本数量.在ORL人脸库和Yale人脸库的实验结果,表明了提出方法的有效性. 相似文献
4.
李童 《重庆工商大学学报(自然科学版)》2012,29(4):45-49
传统的主成分分析(PCA)方法在图像识别时需将图像矩阵转化成向量,造成图像向量的维数偏高,使得整个特征提取过程的计算量较大;在PCA的基础上,有人提出了二维主成分分析(2DPCA)的方法,但其本质是对图像矩阵按行进行特征提取,虽然消除了图像列的相关性,但是仍然忽视了行的相关性;因此,在此考虑一种改进的方法能同时消除图像行、列的相关性,并通过实验得到了比2DPCA更高效的识别率。 相似文献
5.
一维方法特征提取时运算量大,图像较大时很不方便.二维的方法特征提取直接,速度快,但提取出的特征是矩阵,特征数量大,影响分类速度.结合2者的优点,提出二维与一维相结合的特征提取方法来识别人脸.先用二维PCA(2DPCA)处理原始图像,降维后进行DLDA处理.在ORL人脸库中验证了这种算法的可行性,结果表明识别率和分类速度均有提高. 相似文献
6.
7.
阐述了基于主成分分析(Principal Component Analysis,PCA)和二维主成分分析(2DPCA)的人脸识别方法,分析了该方法在矩阵理论中的来源和算法,提出了PCA+2DPCA分析方法,并采用2DPCA求出特征向量,PCA进行最优压缩,从而降低了维数. 相似文献
8.
人脸识别过程中,针对二维主成分分析(2DPCA)算法在特征提取和数据降维上存在的问题,本文首先引入双向二维主成分分析(2D2DPCA)算法,该算法同时考虑图像行与列方向上的信息.考虑到人脸图像存在信息冗余而影响识别率的问题,于是本文提出一种基于小波加权双向二维主成分分析(WT-W2D2DPCA)的人脸识别算法.该算法首先采用二级小波分解对人脸图像进行预处理,提取其低频部分;然后根据人脸图像的特性,将低频部分进行奇偶分解,并引入加权思想,重组低频人脸图像,最后在ORL人脸数据库上进行双向二维主成分分析.实验结果表明,该方法不仅克服了传统2DPCA系数矩阵大的问题,而且得到了比传统的2DPCA、2D2DPCA算法更好的识别效果. 相似文献
9.
本文提出了基于局部特征自适应加权2维主成分分析(2DPCA)表情识别方法。该方法采用分块来融合基于整体模板的分类方法和基于几何特征的分类方法,通过虚拟样本自适应地计算出不同特征对识别的不同贡献,并加权到分类器中。 相似文献
10.
基于模块C-2DPCA算法的人脸识别方法 总被引:1,自引:0,他引:1
He Kunxian Da Feipeng 《东南大学学报(自然科学版)》2008,(Z2)
提出了基于模块化完全二维主成分分析(modular C-2DPCA)算法的人脸识别方法,该方法首先对图像矩阵进行分块,将分块得到的子图像矩阵直接用于鉴别分析,由于直接基于二维子图像矩阵,能方便地降低鉴别特征的维数,在特征提取过程中可以避免使用矩阵的奇异值分解,方法简便.该方法与改进前完全二维主成分分析(C-2DPCA)方法在ORL人脸数据库上的仿真识别效果比较表明,改进后的方法在保持较高识别率的前提下鲁棒性有很大提高. 相似文献
11.
主成分分析(principal component analysis:PCA)已成功用于人脸识别,但基于主成分分析的人脸识别方法需要将图像数据向量化,而向量化后的图像样本维数非常大,计算代价非常高.二维主成分分析(2 di mension principal component analysis:2DPCA)直接处理图像数据,不需要向量化的过程,2DPCA降低了计算复杂度,但是2DPCA与PCA相比,需要存储更多的系数,即要占用更多的存储空间.本文提出了一种基于小波变换和2DPCA的人脸识别方法,可以克服上述缺点,实验结果证明了该方法的有效性. 相似文献
12.
阐述了基于主成分分析和二维主成分分析的颅骨识别方法,比较了两种特征提取算法,通过比较得出:二维主成分分析速度快,不需要经过一个降维的过程,而且识别率高.在获得颅骨的三维几何信息后,对数据进行特征提取时采取的是二维主成分分析方法,从而提取颅骨图像的关键特征,最后利用常用的最近邻法则进行识别. 相似文献
13.
人脸识别中一种新的Gabor特征提取方法 总被引:3,自引:3,他引:3
为了有效利用Gabor特征进行人脸识别,提出一种新的Gabor特征提取方法.首先利用类别可分离性判据评价Gabor展开系数的分类能力,选择最有利于识别的Gabor展开系数构造新的Gabor特征、然后对人脸不同局部位置处采样点的分类能力进行评价,选择分类能力最强的位置提取特征点、最后就新的Gabor特征对光照和表情变化的适应性进行测试.实验结果表明,新的特征提取方法能够在小样本条件下有效提高识别率,减少特征数量,并对环境变化具有一定的适应能力. 相似文献
14.
人脸识别技术研究作为对人身份鉴别研究的重要方面,目前已经提出了许多的识别方法,取得了一定的研究成果。本文就人脸识别技术的一些研究方法进行综述,讨论人脸识别的关键技术及其应用和发展前景。 相似文献
15.
人脸识别作为生物识别技术的一种,具有无接触、安全和方便的特点.人脸识别技术广泛应用于人机交互、交易认证及安防等领域,一直是生物识别技术研究的热点.人脸检测、特征定位、人脸归一化和特征提取是人脸识别研究的重点,决定着人脸识别系统的最终性能.设计了基于人脸轮廓的人脸归一化方法,根据归一化中出现的问题,进一步提出了人眼位置与人脸轮廓结合的人脸归一化方法.实验结果表明在Yale人脸图像库上人眼位置与人脸轮廓结合的人脸归一化方法具有更高的正确率. 相似文献