首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Enhanced cell migration is one of the underlying mechanisms in cancer invasion and metastasis. Therefore, inhibition of cell migration is considered to be an effective strategy for prevention of cancer metastasis. We found that emodin (3-methyl-1,6,8-trihydroxyanthraquinone), an active component from the rhizome of Rheum palmatum, significantly inhibited epidermal growth factor (EGF)- induced migration in various human cancer cell lines. In the search for the underlying molecular mechanisms, we demonstrated that phosphatidylinositol 3-kinase (PI3K) serves as the molecular target for emodin. In addition, emodin markedly suppressed EGF-induced activation of Cdc42 and Rac1 and the corresponding cytoskeleton changes. Moreover, emodin, but not LY294002, was able to block cell migration in cells transfected with constitutively active (CA)-Cdc42 and CA-Rac1 by interference with the formation of Cdc42/Rac1 and the p21-activated kinase complex. Taken together, data from this study suggest that emodin inhibits human cancer cell migration by suppressing the PI3K-Cdc42/Rac1 signaling pathway.Received 7 February 2005; received after revision 11 March 2005; accepted 18 March 2005  相似文献   

2.
The GTP-binding proteins RhoA, Cdc42 and Rac1 regulate the organization and turnover of the cytoskeleton and cell-matrix adhesions, structures bridging cells to their support, and translating forces, external or generated within the cell. To investigate the specific requirements of Rho GTPases for biomechanical activities of clonal cell populations, we compared side-by-side stable lines of human fibroblasts expressing constitutively active (CA) RhoA, Cdc42 or Rac1. There was no marked effect of any CA GTPase on cell adhesion to different extracellular matrix proteins. Cell spreading was CA Rho GTPase specific and independent of the extracellular matrix proteins allowing adhesion. Mechanical properties were dramatically restricted by CA RhoA on bi- and in tri-dimensional surroundings, were boosted by CA Rac1 on bi-dimensional surroundings only, and were not or marginally affected by CA Cdc42. In conclusion, the action of Rho GTPases appears to depend on the task cells are performing. Received 12 September 2005; received after revision 5 October 2005; accepted 1 November 2005  相似文献   

3.
The rapid migration of intestinal epithelial cells (IEC) is important for the healing of mucosal wounds. We have previously shown that polyamine depletion inhibits migration of IEC-6 cells. Akt activation and its downstream target GSK-3β have been implicated in the regulation of migration. Here we investigated the significance of elevated phosphatidylinositol 3-kinase (PI3K)/Akt signaling on migration of polyamine-depleted cells. Polyamine-depleted cells had high Akt (Ser473) and GSK-3β (Ser9) phosphorylation. Pretreatment with 20 μM LY294002 (PI3K inhibitor) for 30 min inhibited phosphorylation of Akt, increased migration by activating Rac1 in polyamine-depleted IEC-6 cells, and restored the actin structure similar to that in cells grown in control medium. Treatment of cells with a GSK-3β inhibitor (AR-A014418) altered the actin cytoskeleton and inhibited migration, mimicking the effects of polyamine depletion. Thus, our results indicate that sustained activation of Akt in response to polyamine depletion inhibits migration through GSK-3β and Rac1. Received 25 August 2006; received after revision 3 October 2006; accepted 16 October 2006  相似文献   

4.
Osteoclasts are multinucleated cells responsible for bone resorption. Osteoclasts adhere to the bone surface through integrins and polarize to form actin rings, which are formed by the assembly of podosomes. The area contained within actin rings (also called sealing zones) has an acidic pH, which causes dissolution of bone minerals including hydroxyapatite and the degradation of matrix proteins including type I collagen by the protease cathepsin K. Osteoclasts resorb bone matrices while moving on bone surfaces. Osteoclasts change their cell shapes and exhibit three modes for bone resorption: motile resorbing mode for digging trenches, static resorbing mode for digging pits, and motile non-resorbing mode. Therefore, the actin cytoskeleton is actively remodeled in osteoclasts. Recent studies have revealed that many molecules, such as Rac, Cdc42, Rho, and small GTPase regulators and effectors, are involved in actin cytoskeletal remodeling during the formation of actin rings and resorption cavities on bone slices. In this review, we introduce how these molecules and non-canonical Wnt signaling regulate the bone-resorbing activity of osteoclasts.  相似文献   

5.
Targeting of the Akt/PKB kinase to the actin skeleton   总被引:2,自引:0,他引:2  
Serine/threonine kinase Akt/PKB intracellular distribution undergoes rapid changes in response to agonists such as Platelet-derived growth factor (PDGF) or Insulin-like growth factor (IGF). The concept has recently emerged that Akt subcellular movements are facilitated by interaction with nonsubstrate ligands. Here we show that Akt is bound to the actin skeleton in in situ cytoskeletal matrix preparations from PDGF-treated Saos2 cells, suggesting an interaction between the two proteins. Indeed, by immunoprecipitation and subcellular fractioning, we demonstrate that endogenous Akt and actin physically interact. Using recombinant proteins in in vitro binding and overlay assays, we further demonstrate that Akt interacts with actin directly. Expression of Akt mutants strongly indicates that the N-terminal PH domain of Akt mediates this interaction. More important, we show that the partition between actin bound and unbound Akt is not constant, but is modulated by growth factor stimulation. In fact, PDGF treatment of serum-starved cells triggers an increase in the amount of Akt associated with the actin skeleton, concomitant with an increase in Akt phosphorylation. Conversely, expression of an Akt mutant in which both Ser473 and Thr308 have been mutated to alanine completely abrogates PDGF-induced binding. The small GTPases Rac1 and Cdc42 seem to facilitate actin binding, possibly increasing Akt phosphorylation.Received 10 September 2003; accepted 25 September 2003  相似文献   

6.
Pseudomonas aeruginosa is a major human opportunistic pathogen and one of the most important causal agents of bacteremia. For non-blood-borne infection, bacterial dissemination requires the crossing of the vascular endothelium, the main barrier between blood and the surrounding tissues. Here, we investigated the effects of P. aeruginosa type 3 secretion effectors, namely ExoS, ExoT, and ExoY, on regulators of actin cytoskeleton dynamics in primary endothelial cells. ExoS and ExoT similarly affected the Lim kinase-cofilin pathway, thereby promoting actin filament severing. Cofilin activation was also observed in a mouse model of P. aeruginosa-induced acute pneumonia. Rho, Rac, and Cdc42 GTPases were sequentially inactivated, leading to inhibition of membrane ruffling, filopodia, and stress fiber collapse, and focal adhesion disruption. At the end of the process, ExoS and ExoT produced a dramatic retraction in all primary endothelial cell types tested and thus a rupture of the endothelial monolayer. ExoY alone had no effect in this context. Cell retraction could be counteracted by overexpression of actin cytoskeleton regulators. In addition, our data suggest that moesin is neither a direct exotoxin target nor an important player in this process. We conclude that any action leading to inhibition of actin filament breakdown will improve the barrier function of the endothelium during P. aeruginosa infection.  相似文献   

7.
Developmental exposure to ethanol impairs fetal brain development and causes fetal alcohol syndrome. Although the cerebellum is one of the most alcohol-sensitive brain areas, signaling mechanisms underlying the deleterious effects of ethanol on developing cerebellar granule neurons (CGNs) are largely unknown. Here we describe the effects of in vivo ethanol exposure on neurite formation in CGNs and on the activation of Rho GTPases (RhoA and Rac1), regulators of neurite formation. Exposure of 7-day-old rat pups to ethanol for 3 h moderately increased blood alcohol concentration (BAC) (∼40 mM) and inhibited neurite formation and Rac1 activation in CGNs. Longer exposure to ethanol for 5 h resulted in higher BAC (∼80 mM), induced apoptosis, inhibited Rac1, and activated RhoA. Studies demonstrated a regulatory role of Rho GTPases in differentiation of cerebellar neurons, and indicated that ethanol-associated impairment of Rho GTPase signaling might contribute to brain defects observed in fetal alcohol syndrome. Received 16 July 2006; received after revision 12 September 2006; accepted 13 October 2006  相似文献   

8.
Sepsis is a leading cause of death worldwide. Increased vascular permeability is a major hallmark of sepsis. Dynamic alterations in actin fiber formation play an important role in the regulation of endothelial barrier functions and thus vascular permeability. Endothelial integrity requires a delicate balance between the formation of cortical actin filaments that maintain endothelial cell contact stability and the formation of actin stress fibers that generate pulling forces, and thus compromise endothelial cell contact stability. Current research has revealed multiple molecular pathways that regulate actin dynamics and endothelial barrier dysfunction during sepsis. These include intracellular signaling proteins of the small GTPases family (e.g., Rap1, RhoA and Rac1) as well as the molecules that are directly acting on the actomyosin cytoskeleton such as myosin light chain kinase and Rho kinases. Another hallmark of sepsis is an excessive recruitment of neutrophils that also involves changes in the actin cytoskeleton in both endothelial cells and neutrophils. This review focuses on the available evidence about molecules that control actin dynamics and regulate endothelial barrier functions and neutrophil recruitment. We also discuss treatment strategies using pharmaceutical enzyme inhibitors to target excessive vascular permeability and leukocyte recruitment in septic patients.  相似文献   

9.
Fenofibrate, a peroxisome proliferator-activated receptor (PPAR)-alpha activator, used as a normolipidemic agent, is thought to offer additional beneficial effects in atherosclerosis. Since angiogenesis is involved in plaque progression, hemorrhage, and instability, the main causes of ischemic events, this study was designed to evaluate the action of fenofibrate on angiogenesis. Our results show that fenofibrate (i) inhibits endothelial cell proliferation induced by angiogenic factors, followed at high concentrations by an increase in apoptosis, (ii) inhibits endothelial cell migration in a healing wound model, (iii) inhibits capillary tube formation in vitro, and (iv) inhibits angiogenesis in vivo. Concerning the mechanism of action, the inhibition of endothelial cell migration by fenofibrate can be explained by a disorganization of the actin cytoskeleton. At the molecular level, fenofibrate markedly decreased basic fibroblast growth factor-induced Akt activation and cyclooxygenase 2 gene expression. This inhibition of angiogenesis could participate in the beneficial effect of fenofibrate in atherosclerosis.  相似文献   

10.
Attraction of lung macrophages to particle deposition sites has been demonstrated in different animal species. We reported a threefold increase of the number of macrophages to occur within 40 min after polystyrene particle deposition in hamster airways [Geiser et al. (1994) Am. J. Respir. Cell Mol. Biol. 160: 594–603]. Complement-derived chemotactic activity is one of the mechanisms postulated for macrophage recruitment. It was the aim of this study to test whether complement-derived chemotactic activity is involved in the rapid recruitment of macrophages to the site of deposited polystyrene particles in hamster airways. We first developed an in vitro cell migration assay for hamster macrophages to assess complement-derived chemotaxis. Second, the bronchoalveolar lavage fluids (BALF) of four hamsters that had inhaled aerosols of polystyrene microspheres were tested for chemotactic activity by this bioassay and compared with BALF of four sham-exposed hamsters. Chemotactic response of macrophages was found toward complement-activated hamster serum, whereas macrophage migration was not increased toward BALF of particle and sham-exposed hamsters. In contrast, macrophage migration to BALF of both groups was reduced by 1.6-fold. Thus, the stimulus for macrophage recruitment to the site of deposited polystyrene particles in hamster airways could not be demonstrated using this bioassay. Received 10 September 1997; received after revision 24 November 1997; accepted 10 December 1997  相似文献   

11.
The small G protein Rho subfamily controls several cellular events such as growth, movement, proliferation and differentiation by rearranging actin and cytoskeleton proteins. Most of these effects are mediated by the activation of growth factor and extracellular matrix molecule receptors, suggesting a role for Rho molecules in the transduction pathway of these receptors. Despite the importance of Rho peptides in fundamental cellular events, data on their subcellular immunolocalisation are sparse: here we investigated the expression and subcellular localisation of RhoA in resting (cultured on plastic) and activated (Matri-cell or hepatocyte growth factor) MDCK cells by immunoperoxidase and immunogold techniques. Resting MDCK cells contain detectable amounts of RhoA mainly localised in the cytoplasm; RhoA expression is significantly enhanced by Matri-cell substrates that promote translocation of RhoA at the membrane level. This enhancing effect is reduced after exposure to hepatocyte growth factor.  相似文献   

12.
RhoA/Rho-kinase pathway plays an important role in many pathological conditions. RhoA participates in the regulation of smooth muscle tone and activates many downstream kinases. The best characterized are the serine/threonine kinase isoforms (Rho-kinase or ROCK), ROCKα/ROCK2 and ROCKβ/ROCK1. ROCK is necessary for diverse functions such as local blood flow, arterial/pulmonary blood pressure, airway resistance and intestinal peristalsis. ROCK activation permits actin/myosin interactions and smooth muscle cells contraction by maintaining the activity of myosin light-chain kinase, independently of the free cytosolic calcium level. The sensitization of smooth muscle myofilaments to calcium has been implicated in many pathological states, such as hypertension, diabetes, heart attack, stroke, pulmonary hypertension, erectile dysfunction, and cancer. The focus of this review is on the involvement of RhoA/Rho-kinase in diseases. We will briefly describe the ROCK isoforms and the role of RhoA/Rho-kinase in the vasculature, before exploring the most recent findings regarding this pathway and various diseases.  相似文献   

13.
Proteins are typically categorized into protein families based on their domain organization. Yet, evolutionarily unrelated proteins can also be grouped together according to their common functional roles. Sequestering proteins constitute one such functional class, acting as macromolecular buffers and serving as an intracellular reservoir ready to release large quantities of bound proteins or other molecules upon appropriate stimulation. Another functional protein class comprises effector proteins, which constitute essential components of many intracellular signal transduction pathways. For instance, effectors of small GTP-hydrolases are activated upon binding a GTP-bound GTPase and thereupon participate in downstream interactions. Here we describe a member of the IQGAP family of scaffolding proteins, DGAP1 from Dictyostelium, which unifies the roles of an effector and a sequestrator in regard to the small GTPase Rac1. Unlike classical effectors, which bind their activators transiently leading to short-lived signaling complexes, interaction between DGAP1 and Rac1-GTP is stable and induces formation of a complex with actin-bundling proteins cortexillins at the back end of the cell. An oppositely localized Rac1 effector, the Scar/WAVE complex, promotes actin polymerization at the cell front. Competition between DGAP1 and Scar/WAVE for the common activator Rac1-GTP might provide the basis for the oscillatory re-polarization typically seen in randomly migrating Dictyostelium cells. We discuss the consequences of the dual roles exerted by DGAP1 and Rac1 in the regulation of cell motility and polarity, and propose that similar signaling mechanisms may be of general importance in regulating spatiotemporal dynamics of the actin cytoskeleton by small GTPases.  相似文献   

14.
Phagocytes utilize reactive oxygen species (ROS) to kill pathogenic microorganisms. The source of ROS is an enzymatic complex (the NADPH oxidase), comprising a membrane-associated heterodimer (flavocytochrome b (558)), consisting of subunits Nox2 and p22(phox), and four cytosolic components (p47(phox), p67(phox), p40(phox), and Rac). The primordial ROS (superoxide) is generated by the reduction of molecular oxygen by NADPH via redox centers located on Nox2. This process is activated by the translocation of the cytosolic components to the membrane and their assembly with Nox2. Membrane translocation is preceded by interactions among cytosolic components. A number of proteins structurally and functionally related to Nox2 have been discovered in many cells (the Nox family) and these have pleiotropic functions related to the production of ROS. An intense search is underway to design therapeutic means to modulate Nox-dependent overproduction of ROS, associated with diseases. Among drug candidates, a central position is held by synthetic peptides reflecting domains in oxidase components involved in NADPH oxidase assembly. Peptides, corresponding to domains in Nox2, p22(phox), p47(phox), and Rac, found to be oxidase activation inhibitory in vitro, are reviewed. Usually, peptides are inhibitory only when added preceding assembly of the complex. Although competition with intact components seems most likely, less obvious mechanisms are, sometimes, at work. The use of peptides as inhibitory drugs in vivo requires the development of methods to assure cell penetration, resistance to degradation, and avoidance of toxicity, and modest successes have been achieved. The greatest challenge remains the discovery of peptide inhibitors acting specifically on individual Nox isoforms.  相似文献   

15.
In the last decade, metabolism has been recognized as a major determinant of immunological processes. During an inflammatory response, macrophages undergo striking changes in their metabolism. This metabolic reprogramming is governed by a complex interplay between metabolic enzymes and metabolites of different pathways and represents the basis for proper macrophage function. It is now evident that these changes go far beyond the well-known Warburg effect and the perturbation of metabolic targets is being investigated as a means to treat infections and auto-immune diseases. In the present review, we will aim to provide an overview of the metabolic responses during proinflammatory macrophage activation and show how these changes modulate the immune response.  相似文献   

16.
ORP2 is a ubiquitously expressed OSBP-related protein previously implicated in endoplasmic reticulum (ER)—lipid droplet (LD) contacts, triacylglycerol (TG) metabolism, cholesterol transport, adrenocortical steroidogenesis, and actin-dependent cell dynamics. Here, we characterize the role of ORP2 in carbohydrate and lipid metabolism by employing ORP2-knockout (KO) hepatoma cells (HuH7) generated by CRISPR-Cas9 gene editing. The ORP2-KO and control HuH7 cells were subjected to RNA sequencing, analyses of Akt signaling, carbohydrate and TG metabolism, the extracellular acidification rate, and the lipidome, as well as to transmission electron microscopy. The loss of ORP2 resulted in a marked reduction of active phosphorylated Akt(Ser473) and its target Glycogen synthase kinase 3β(Ser9), consistent with defective Akt signaling. ORP2 was found to form a physical complex with the key controllers of Akt activity, Cdc37, and Hsp90, and to co-localize with Cdc37 and active Akt(Ser473) at lamellipodial plasma membrane regions, in addition to the previously reported ER–LD localization. ORP2-KO reduced glucose uptake, glycogen synthesis, glycolysis, mRNA-encoding glycolytic enzymes, and SREBP-1 target gene expression, and led to defective TG synthesis and storage. ORP2-KO did not reduce but rather increased ER–LD contacts under basal culture conditions and interfered with their expansion upon fatty acid loading. Together with our recently published work (Kentala et al. in FASEB J 32:1281–1295, 2018), this study identifies ORP2 as a new regulatory nexus of Akt signaling, cellular energy metabolism, actin cytoskeletal function, cell migration, and proliferation.  相似文献   

17.
Calpains are Ca2+-dependent intracellular proteases that play central roles in the post-translational processing of functional proteins. In mammals, calpain proteolytic systems comprise the endogenous inhibitor calpastatin as well as 15 homologues of the catalytic subunits and two homologues of the regulatory subunits. Recent pharmacological and gene targeting studies in experimental animal models have revealed the contribution of conventional calpains, which consist of the calpain-1 and -2 isozymes, to atherosclerotic diseases. During atherogenesis, conventional calpains facilitate the CD36-dependent uptake of oxidized low-density lipoprotein (LDL), and block cholesterol efflux through ATP-binding cassette transporters in lesional macrophages, allowing the expansion of lipid-enriched atherosclerotic plaques. In addition, calpain-6, an unconventional non-proteolytic calpain, in macrophages reportedly potentiates pinocytotic uptake of native LDL, and attenuates the efferocytic clearance of apoptotic and necrotic cell corpses from the lesions. Herein, we discuss the recent progress that has been made in our understanding of how calpain contributes to atherosclerosis, in particular focusing on macrophage cholesterol handling.  相似文献   

18.
Insulin-like growth factor I (IGF-I) is a potent stimulator of neuroblastoma cell motility. Cell motility requires lamellipodium extension at the leading edge of the cell through organized actin polymerization, and IGF-I stimulates lamellipodial elaboration in human neuroblastoma cells. Rac is a Rho GTPase that stimulates lamellipodial formation via the regulation of actin polymerization. In this study, we show that IGF-I-stimulated phosphatidylinositol 3-kinase (PI-3K) activity promotes rac activation and subsequent activation of the down- stream effectors LIM kinase and cofilin. Overexpression of wild-type LIM kinase and wild-type Xenopus ADF/cofilin (XAC) suppresses IGF-I-stimulated motility in SH-SY5Y cells, while expression of dominant negative LIM kinase and constitutively active XAC increases SH-SY5Y motility in the absence of IGF-I stimulation. These results suggest that regulation by cofilin of actin depolymerization is important in the process of neuroblastoma cell motility, and IGF-I regulates cofilin activity in part through PI-3K, rac, and LIM kinase.Received 18 October 2004; received after revision 3 December 2004; accepted 16 December 2004  相似文献   

19.
Reactive oxygen species (ROS) production by the phagocyte NADPH oxidase is essential for host defenses against pathogens. ROS are very reactive with biological molecules such as lipids, proteins and DNA, potentially resulting in cell dysfunction and tissue insult. Excessive NADPH oxidase activation and ROS overproduction are believed to participate in disorders such as joint, lung, vascular and intestinal inflammation. NADPH oxidase is a complex enzyme composed of six proteins: gp91phox (renamed NOX2), p22phox, p47phox, p67phox, p40phox and Rac1/2. Inhibitors of this enzyme could be beneficial, by limiting ROS production and inappropriate inflammation. A few small non-peptide inhibitors of NADPH oxidase are currently used to inhibit ROS production, but they lack specificity as they inhibit NADPH oxidase homologues or other unrelated enzymes. Peptide inhibitors that target a specific sequence of NADPH oxidase components could be more specific than small molecules. Here we review peptide-based inhibitors, with particular focus on a molecule derived from gp91phox/NOX2 and p47phox, and discuss their possible use as specific phagocyte NADPH oxidase inhibitors.  相似文献   

20.
Plasticity is a well-known property of macrophages that is controlled by different changes in environmental signals. Macrophage polarization is regarded as a spectrum of activation phenotypes adjusted from one activation extreme, the classic (M1), to the other, the alternative (M2) activation. Here we show, in vitro and in vivo, that both M1 and M2 macrophage phenotypes are tightly coupled to specific patterns of gene expression. Novel M2-associated markers were characterized and identified as genes controlling the extracellular metabolism of ATP to generate pyrophosphates (PPi). Stimulation of M1 macrophages with PPi dampens both NLR and TLR signaling and thus mediates cytokine production. In this context extracellular PPi enhanced the resolution phase of a murine peritonitis model via a decrease in pro-inflammatory cytokine production. Therefore, our study reveals an additional level of plasticity modulating the resolution of inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号