首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
针对工地、危险区域等场景需要实现同时佩戴安全帽与口罩的自动检测问题,提出一种改进的YOLOv3算法以提高同时检测安全帽和口罩佩戴的准确率.首先,对网络模型中的聚类算法进行优化,使用加权核K-means聚类算法对训练数据集聚类分析,选取更适合小目标检测的Anchor Box,以提高检测的平均精度和速度;然后,优化YOLO...  相似文献   

2.
为了平衡深度学习网络在网络深度、模型效果和易用性之间的关系,针对安全帽佩戴检测,提出一种基于轻量化模块的改进YOLOv4网络。在主干网络中,采用深度可分卷积和压缩激励机制所组成的模块替换残差块,在不进行内部堆叠的情况下,减少网络的深度和参数量;在聚合网络中,采用反向注意力机制模块增加目标物体的显著信息,使网络获取的特征包含更丰富的细节信息。在公开的安全帽佩戴图像数据集上进行的实验表明,提出方法的模型大小为106.4 M,相比原网络减少了149.9 M,网络检测的平均精确度均值比原网络有所提升,验证了轻量化目标检测方法及其在安全帽检测应用中的有效性。  相似文献   

3.
在大型水利建造工程现场,存在高空坠物、塔吊转动、墙体坍塌等问题,对于建造人员人身安全造成巨大威胁,佩戴安全帽是保护建造人员的有效措施,作为工程作业中的安全管理,对建造人员进行安全帽佩戴的精确检测很有必要。针对现有安全帽检测算法在大型水利建造场景下对小且密集的安全帽目标存在漏检、检测精度较低等问题,提出一种基于STA-YOLOv5的安全帽佩戴检测算法,该算法将Swin Transformer和注意力机制引入到YOLOv5算法中,提高模型对安全帽的识别能力。实验结果表明,STA-YOLOv5算法具有更精确检测结果,识别准确率达到91.6%,较原有的YOLOv5算法有明显提升。  相似文献   

4.
针对个人防护用具安全帽的防护检测识别需求,现有的人工检测方法费时费力,无法做到实时监测.提出了一种基于YOLOv5s深度学习模型的安全帽检测算法,能够有效识别检测安全帽是否正确佩戴.并通过添加CA注意力机制,重新分配每个空间和通道的权重;以BoT3替代原有的C3模型,作为主干网络;并将CIOU损失函数改为SIOU等方法,改进原有的YOLOv5s模型,提高安全帽检测识别的精度,提高检测速度.实验结果表明,安全帽识别检测的平均精度比原始模型提高了2.2%,识别检测速度提升了19 ms,实现了更准确地轻量高效实时的安全帽佩戴检测.  相似文献   

5.
在施工的过程中,需要对人员安全帽佩戴情况进行快速准确地检测并及时预警,实现减少生命和财产的损失。但现有的安全帽佩戴检测算法存在检测速度慢、检测精准度不高等问题,为解决此类问题,提出了一种基于目标检测算法SSD(Single Shot Multi Box Detector)的改进安全帽佩戴快速检测算法。通过使用轻量型卷积神经网络Mobile Net V3-small替换SSD检测算法的卷积神经网络VGG-16,实现减少模型参数,提升检测速率的目的;同时使用特征金字塔网络结构将深层更抽象的特征与浅层更细节特征进行信息的融合,提升检测精确度;以自主制作安全帽数据集HWear的方式进行训练和测试实验,训练时利用数据增强技术提高模型的检测性能。实验结果表明,改进的SSD算法提升了人员安全帽佩戴检测速率,达到108 fps,同时相比于SSD算法平均精确率(mAP)提升了0.5%,具有一定的实践意义。  相似文献   

6.
为实现智能检测室内作业人员是否佩戴安全帽,提出了一种改进的Yolov4算法.首先,针对目前室内安全帽佩戴状态检测实验数据较为匮乏的问题,自建了一个用于室内场景的安全帽佩戴状态检测数据集.随后,为提升室内监控图像中模糊、微小目标的安全帽佩戴状态检测准确率,设计了自校准多尺度特征融合模块并将其嵌入原Yolov4网络中.该模块首先通过深度超参数化卷积从上至下、从下至上融合不同尺度下的特征,加强待检测目标的特征纹理,使得模型能够检测出这两类目标.再通过特征自校准模块对融合后的特征进行过滤,加强或抑制特征图上的每一像素点,使得模型可以在融合后的特征图上进行精确的检测.此外为加速模型收敛,使用解耦合的检测头替换原Yolov4中的耦合检测头,使目标定位任务与安全帽佩戴状态的分类任务相互独立.最后为提升模型对于重叠目标的检测能力,提出了软性非极大值抑制后处理算法Soft-CIo U-NMS.实验结果表明,该改进的Yolov4模型能够准确地识别出室内作业人员是否佩戴安全帽,准确率达到了95.1%.相比于原Yolov4模型,该模型对位于监控摄像头远端的模糊、微小目标和监控图像中重叠目标的检测能力有明显提升...  相似文献   

7.
8.
9.
提出一种基于改进型YOLO v5算法的安全帽佩戴检测方法,通过安全帽区域与头部区域的位置关系判断安全帽佩戴情况,对算法中候选框、卷基层、输入端和量化方法进行改进.通过与其他安全帽佩戴检测方法进行试验对比分析,改进后的算法可以提高识别精度与速度,更好满足实时监控的需求.  相似文献   

10.
针对现有施工场所下工人安全帽佩戴检测模型推理耗时长、对硬件要求高,且复杂多变环境下的训练数据集单一、数量少导致模型鲁棒性较差等问题,提出了一种轻量化的安全帽佩戴检测模型YOLO-S.首先,针对数据集类别不平衡问题,设计混合场景数据增强方法,使类别均衡化,提高模型在复杂施工环境下的鲁棒性;将原始YOLOv5s主干网络更改为MobileNetV2,降低了网络计算复杂度.其次,对模型进行压缩,通过在BN层引入缩放因子进行稀疏化训练,判定各通道重要性,对冗余通道剪枝,进一步减少模型推理计算量,提高模型检测速度.最后,通过知识蒸馏辅助模型进行微调得到YOLO-S.实验结果表明,YOLO-S的召回率及mAP较YOLOv5s分别提高1.9%、1.4%,模型参数量压缩为YOLOv5s的1/3,模型体积压缩为YOLOv5s的1/4, FLOPs为YOLOv5s的1/3,推理速度快于其他模型,可移植性较高.  相似文献   

11.
针对基于目标检测方法的桥梁表观病害检测存在检测精度低、误检率和漏检率高的问题,提出一种改进YOLOv3的高准确率桥梁表观病害检测识别方法。为实现局部特征和全局特征有效融合,在YOLOv3的检测层中添加固定分块大小的池化模块,并在YOLOv3的特征提取网络中引入了DenseNet密集型连接网络结构以增强桥梁病害特征在网络中的传播和利用效率,提高检测效率,采用数据增强技术来扩充样本图像以解决现有桥梁病害数据集样本数量不足的问题。实验结果表明,改进后的YOLOv3在桥梁表观病害检测上的平均准确率比原YOLOv3提高了3.0%,且模型训练时间减少了33.2%,同时降低了对桥梁表观病害检测的误检率和漏检率。  相似文献   

12.
针对O型密封圈缺陷难以人工识别的问题,提出一种基于改进YOLOv5的表面缺陷自动检测方法。在数据预处理阶段,采用半自动标注方法减少人工标注成本,同时将拼接图片改为9张以实现Mosaic数据增强方法。在网络预测层引入标签平滑方法以减少模型过度依赖标签。在骨干网络中添加卷积注意力机制模块,强化有效信息,使骨干网络提取更加细致的局部特征信息。同时,针对缺陷类型尺度变化大的特点,引入剪枝的双向特征金字塔网络,以解决大小缺陷在特征提取过程中的丢失问题。实验结果表明,基于改进的YOLOv5与原YOLOv5相比,O型圈表面缺陷检测平均精度均值提高了4.26%,并且检测速度在25 ms之内,能够满足实际生产需要。  相似文献   

13.
绝缘子缺陷检测是电网巡检过程中重要的一环,为提高绝缘子缺陷检测的精度,该文提出一种基于改进YOLOv5算法的绝缘子缺陷检测算法——YOLOv5t,能够在保证网络运行速度的条件下,提升网络的检测精度.该算法在YOLOv5s的基础上,将三重注意力机制(triplet attention)添加到骨干网络中,给予每个特征通道不同的权重,以提高网络的检测精度;并采用CIoU Loss作为网络回归损失的损失函数,提升网络的收敛速度;同时将Soft-NMS作为网络的预测结果处理方法,降低网络的漏检率.YOLOv5t与几种常用的缺陷检测网络的对比实验结果表明,YOLOv5t的准确率达到97.2%,召回率达到98%,平均精度均值达到99.1%,较YOLOv5s算法分别提升了0.9%、5.1%和2.1%,并且检测速度没有受到影响.  相似文献   

14.
针对密集场景下行人检测的目标重叠和尺寸偏小等问题,提出了基于改进YOLOv5的拥挤行人检测算法。在主干网络中嵌入坐标注意力机制,提高模型对目标的精准定位能力;在原算法三尺度检测的基础上增加浅层检测尺度,增强小尺寸目标的检测效果;将部分普通卷积替换为深度可分离卷积,在不影响模型精度的前提下减少模型的计算量和参数量;优化边界框回归损失函数,提升模型精度和加快收敛速度。实验结果表明,与原始的YOLOv5算法相比,改进后YOLOv5算法的平均精度均值提升了7.4个百分点,检测速度达到了56.1帧/s,可以满足密集场景下拥挤行人的实时检测需求。  相似文献   

15.
针对复杂交通场景下密集小目标居多、目标尺寸差异大、目标间遮挡严重的问题,提出了一种基于YOLOv4框架的复杂交通场景下的目标检测算法。首先,构造多尺度特征融合提取模块作为主干网络特征提取模块,充分提取不同尺度目标特征信息,同时引入轻量化Ghost模块对主干网络特征进行维度调整;其次,将卷积模块与自注意力机制融合,构造倒残差自注意力模块应用到主干网络深层,深层网络在充分提取局部特征信息基础上获得了全局感知;然后,构造轻量级混合注意力模块,抑制背景噪声,增强密集小目标检测能力;最后,在Udacity数据集上进行实验,检测精度达到了84.41%,相比较YOLOv4, mAP(mean average precision)提高了3.07%,对1 920×1 200分辨率图像的检测FPS(frames per second)可达到49,提高了22.5%,精度提升的前提下实现了较好的实时性,更适用于复杂交通场景下的目标检测任务。  相似文献   

16.
基于改进YOLOv3的交通标志检测   总被引:2,自引:0,他引:2  
针对交通标志检测小目标数量多、定位困难及检测精度低等问题,本文提出一种基于改进YOLOv3的交通标志检测算法.首先,在网络结构中引入空间金字塔池化模块对3个尺度的预测特征图进行分块池化操作,提取出相同维度的输出,解决多尺度预测中可能出现的信息丢失和尺度不统一问题;然后,加入FI模块对3个尺度特征图进行信息融合,将浅层大特征图中包含的小目标信息添加到深层小特征图中,从而提高小目标检测精度.针对交通标志数据集特点,使用基于GIoU改进的TIoU作为边界框损失函数替换MSE函数,使得边界框回归更加准确;最后,通过k-means++算法对TT100K交通标志数据集进行聚类分析,重新生成尺寸更小的候选框.实验结果表明,本文算法与原始YOLOv3算法相比mAP提升11.1%,且检测每张图片耗时仅增加6.6 ms,仍符合实时检测要求.与其他先进算法相比,本文算法具有更好的检测精度和检测速度.  相似文献   

17.
翟娅娅  朱磊  张博 《科学技术与工程》2022,22(21):9207-9214
在远程水表读数自动识别系统中,为减少网络模型参数量,改善受雾化、抖动等干扰的水表复杂场景图像读数识别精度及半字识别问题,提出了一种基于改进YOLOv4网络的水表读数识别方法。首先,利用深度可分离卷积与引入压缩与激发(squeeze-and-excitation, SE)注意力机制的MobileNetv2瓶颈结构,分别替代YOLOv4网络原有的标准卷积和主干网络;其次,利用加权平均非极大值抑制算法改进预测输出头,形成了一种网络模型参数量明显降低但检测精度不下降的改进YOLOv4网络,同时有效改善了对水表读数“半字”识别的漏检和错检问题;最后,基于字符边框定位的水表读数提取方法,实现“半字”准确提取问题。实验结果表明,所提方法与多种网络学习方法相比,模型参数量压缩14.4%以上,读数识别的准确率和召回率对普通场景水表图像分别提升了0.04%和0.05%以上,对受雾化、抖动等干扰的复杂场景水表图像分别提升了0.11%和0.37%以上。  相似文献   

18.
车辆信息检测是车型识别在智慧交通领域中的首要任务。针对现有的车辆信息检测技术在检测速度、精度以及稳定性方面存在的问题,提出了基于YOLOv3的深度学习目标检测算法——YOLOv3-fass。该算法以DarkNet-53网络结构为基础,删减了部分残差结构,降低了卷积层的通道数,添加了1条下采样支路和3个尺度跳连结构,增加了一个检测尺度,并通过K-均值聚类与手动调节相结合的方法计算出12组锚框值。最后通过迁移学习机制对YOLOv3-fass算法进行微调。在自研的车辆数据集上,YOLOv3-fass算法与YOLOv3、YOLOv3-tiny、YOLOv3-spp算法以及具有ResNet50和DenseNet201经典网络结构的算法做了对比实验,结果表明YOLOv3-fass算法能够更精准、高效、稳定地检测到车辆信息。  相似文献   

19.
根据以往钢铁表面缺陷检测技术的检测效能较低、准确性低的情况,提出一种改进YOLOv5s的钢材表面缺陷检测算法。主要改进为:加入坐标注意力机制(Coordinate Attention,CA)的空洞空间卷积池化金字塔 (Atrous Spatial Pyramid Pooling,ASPP),扩大模型感受野和多尺度感知能力的同时能更好的获取特征位置信息;加入改进的选择性内核注意力机制(Selective Kernel Attention,SK),使模型能更好的利用特征图中的频率信息,提升模型的表达能力;将损失函数替换为SIoU,提升模型性能的同时加快模型的收敛。实验数据表明,改进的YOLOv5s网络模型在NEU-DET数据集上的mAP值为78.13%,相比原网络模型提高了2.85%。改进的模型具有良好的检测型性能的同时检测速度为103.9 FPS,能够满足实际应用场景中钢材表面缺陷实时检测的需求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号