首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Yanagisawa S  Yoo SD  Sheen J 《Nature》2003,425(6957):521-525
  相似文献   

2.
3.
A new protease required for cell-cycle progression in yeast   总被引:47,自引:0,他引:47  
Li SJ  Hochstrasser M 《Nature》1999,398(6724):246-251
In eukaryotes, protein function can be modulated by ligation to ubiquitin or to ubiquitin-like proteins (Ubl proteins). The vertebrate Ubl protein SUMO-1 is only 18% identical to ubiquitin but is 48% identical to the yeast protein Smt3. Both SUMO-1 and Smt3 are ligated to cellular proteins, and protein conjugation to SUMO-1/Smt3 is involved in many physiological processes. It remained unknown, however, whether deconjugation of SUMO-1/Smt3 from proteins is also essential. Here we describe a yeast Ubl-specific protease, Ulp1, which cleaves proteins from Smt3 and SUMO-1 but not from ubiquitin. Ulp1 is unrelated to any known deubiquitinating enzyme but shows distant similarity to certain viral proteases, indicating the existence of a widely conserved protease fold. Proteins related to Ulp1 are present in many organisms, including several human pathogens. The pattern of Smt3-coupled proteins in yeast changes markedly throughout the cell cycle, and specific conjugates accumulate in ulp1 mutants. Ulp1 has several functions, including an essential role in the G2/M phase of the cell cycle.  相似文献   

4.
Chuang PT  McMahon AP 《Nature》1999,397(6720):617-621
  相似文献   

5.
Members of the tumour-necrosis factor receptor (TNFR) family that contain an intracellular death domain initiate signalling by recruiting cytoplasmic death domain adapter proteins. Edar is a death domain protein of the TNFR family that is required for the development of hair, teeth and other ectodermal derivatives. Mutations in Edar-or its ligand, Eda-cause hypohidrotic ectodermal dysplasia in humans and mice. This disorder is characterized by sparse hair, a lack of sweat glands and malformation of teeth. Here we report the identification of a death domain adapter encoded by the mouse crinkled locus. The crinkled mutant has an hypohidrotic ectodermal dysplasia phenotype identical to that of the edar (downless) and eda (Tabby) mutants. This adapter, which we have called Edaradd (for Edar-associated death domain), interacts with the death domain of Edar and links the receptor to downstream signalling pathways. We also identify a missense mutation in its human orthologue, EDARADD, that is present in a family affected with hypohidrotic ectodermal dysplasia. Our findings show that the death receptor/adapter signalling mechanism is conserved in developmental, as well as apoptotic, signalling.  相似文献   

6.
Deg5,deg8 and the double mutant,deg5deg8 of Arabidopsis thaliana were used to study the physiological role of the DEG proteases in the repair cycle of photosystem II (PSII) under heat stress. PSII activity in deg mutants showed increased sensitivity to heat stress, and the extent of this effect was greater in the double mutant, deg5deg8, than in the single mutants, deg5 and deg8. Degradation of the D1 protein was slower in the mutants than in the WT plants. Furthermore, the levels of other PSII reaction center proteins tested remained relatively stable in the mutant and WT plants following high-temperature treatment. Thus, our results indicate that DEG5 and DEG8 may have synergistic function in degradation of D1 protein under heat stress.  相似文献   

7.
8.
H Murakami  G Blobel  D Pain 《Nature》1990,347(6292):488-491
We have previously identified an integral membrane protein (p32) from Saccharomyces cerevisiae as a receptor for protein import into mitochondria, and have localized it to the mitochondrial outer membrane at contact sites. Here we report isolation of the corresponding mitochondrial import receptor gene, termed MIR1. The deduced amino-acid sequence of p32 shows roughly 40% identity with proteins of bovine heart and rat liver that have been suggested to be mitochondrial phosphate carriers. Haploid cells carrying a disrupted MIR1 allele were unable to grow on a non-fermentable carbon source but grew in media containing glucose, indicating that the MIR1 protein is essential for mitochondrial function. Compared with wild type, amounts of some mitochondrial proteins were markedly reduced in cells containing a disrupted MIR1 allele, whereas levels of others were unchanged. This indicates that yeast contains more than one pathway for protein import into mitochondria.  相似文献   

9.
10.
Leonhard K  Stiegler A  Neupert W  Langer T 《Nature》1999,398(6725):348-351
The AAA domain, a conserved Walker-type ATPase module, is a feature of members of the AAA family of proteins, which are involved in many cellular processes, including vesicular transport, organelle biogenesis, microtubule rearrangement and protein degradation. The function of the AAA domain, however, has not been explained. Membrane-anchored AAA proteases of prokaryotic and eukaryotic cells comprise a subfamily of AAA proteins that have metal-dependent peptidase activity and mediate the degradation of non-assembled membrane proteins. Inactivation of an orthologue of this protease family in humans causes neurodegeneration in hereditary spastic paraplegia. Here we investigate the AAA domain of the yeast protein Yme1, a subunit of the iota-AAA protease located in the inner membrane of mitochondria. We show that Yme1 senses the folding state of solvent-exposed domains and specifically degrades unfolded membrane proteins. Substrate recognition and binding are mediated by the amino-terminal region of the AAA domain. The purified AAA domain of Yme1 binds unfolded polypeptides and suppresses their aggregation. Our results indicate that the AAA domain of Ymel has a chaperone-like activity and suggest that the AAA domains of other AAA proteins may have a similar function.  相似文献   

11.
Wang Y  Zhang Y  Ha Y 《Nature》2006,444(7116):179-180
Escherichia coli GlpG is an integral membrane protein that belongs to the widespread rhomboid protease family. Rhomboid proteases, like site-2 protease (S2P) and gamma-secretase, are unique in that they cleave the transmembrane domain of other membrane proteins. Here we describe the 2.1 A resolution crystal structure of the GlpG core domain. This structure contains six transmembrane segments. Residues previously shown to be involved in catalysis, including a Ser-His dyad, and several water molecules are found at the protein interior at a depth below the membrane surface. This putative active site is accessible by substrate through a large 'V-shaped' opening that faces laterally towards the lipid, but is blocked by a half-submerged loop structure. These observations indicate that, in intramembrane proteolysis, the scission of peptide bonds takes place within the hydrophobic environment of the membrane bilayer. The crystal structure also suggests a gating mechanism for GlpG that controls substrate access to its hydrophilic active site.  相似文献   

12.
Mutations in the human presenilin genes cause the most frequent and aggressive forms of familial Alzheimer's disease (FAD). Here we show that in addition to its role in cell fate decisions in non-neuronal tissues, presenilin activity is required in terminally differentiated neurons in vivo. Mutations in the Caenorhabditis elegans presenilin genes sel-12 and hop-1 result in a defect in the temperature memory of the animals. This defect is caused by the loss of presenilin function in two cholinergic interneurons that display neurite morphology defects in presenilin mutants. The morphology and function of the affected neurons in sel-12 mutant animals can be restored by expressing sel-12 only in these cells. The wild-type human presenilin PS1, but not the FAD mutant PS1 A246E, can also rescue these morphological defects. As lin-12 mutant animals display similar morphological and functional defects to presenilin mutants, we suggest that presenilins mediate their activity in postmitotic neurons by facilitating Notch signalling. These data indicate cell-autonomous and evolutionarily conserved control of neural morphology and function by presenilins.  相似文献   

13.
The outer membranes of mitochondria and chloroplasts are distinguished by the presence of beta-barrel membrane proteins. The outer membrane of Gram-negative bacteria also harbours beta-barrel proteins. In mitochondria these proteins fulfil a variety of functions such as transport of small molecules (porin/VDAC), translocation of proteins (Tom40) and regulation of mitochondrial morphology (Mdm10). These proteins are encoded by the nucleus, synthesized in the cytosol, targeted to mitochondria as chaperone-bound species, recognized by the translocase of the outer membrane, and then inserted into the outer membrane where they assemble into functional oligomers. Whereas some knowledge has been accumulated on the pathways of insertion of proteins that span cellular membranes with alpha-helical segments, very little is known about how beta-barrel proteins are integrated into lipid bilayers and assembled into oligomeric structures. Here we describe a protein complex that is essential for the topogenesis of mitochondrial outer membrane beta-barrel proteins (TOB). We present evidence that important elements of the topogenesis of beta-barrel membrane proteins have been conserved during the evolution of mitochondria from endosymbiotic bacterial ancestors.  相似文献   

14.
By analysis of a temperature-sensitive yeast mutant, a heat-shock protein in the matrix of mitochondria, mitochondrial hsp70 (Ssc1p), is found to be involved both in translocation of nuclear-encoded precursor proteins across the mitochondrial membranes and in (re)folding of imported proteins in the matrix.  相似文献   

15.
Fringe is a glycosyltransferase that modifies Notch   总被引:36,自引:0,他引:36  
Notch receptors function in highly conserved intercellular signalling pathways that direct cell-fate decisions, proliferation and apoptosis in metazoans. Fringe proteins can positively and negatively modulate the ability of Notch ligands to activate the Notch receptor. Here we establish the biochemical mechanism of Fringe action. Drosophila and mammalian Fringe proteins possess a fucose-specific beta1,3 N-acetylglucosaminyltransferase activity that initiates elongation of O-linked fucose residues attached to epidermal growth factor-like sequence repeats of Notch. We obtained biological evidence that Fringe-dependent elongation of O-linked fucose on Notch modulates Notch signalling by using co-culture assays in mammalian cells and by expression of an enzymatically inactive Fringe mutant in Drosophila. The post-translational modification of Notch by Fringe represents a striking example of modulation of a signalling event by differential receptor glycosylation and identifies a mechanism that is likely to be relevant to other signalling pathways.  相似文献   

16.
Reactive oxygen species (ROS) are essential components of the innate immune response against intracellular bacteria and it is thought that professional phagocytes generate ROS primarily via the phagosomal NADPH oxidase machinery. However, recent studies have suggested that mitochondrial ROS (mROS) also contribute to mouse macrophage bactericidal activity, although the mechanisms linking innate immune signalling to mitochondria for mROS generation remain unclear. Here we demonstrate that engagement of a subset of Toll-like receptors (TLR1, TLR2 and TLR4) results in the recruitment of mitochondria to macrophage phagosomes and augments mROS production. This response involves translocation of a TLR signalling adaptor, tumour necrosis factor receptor-associated factor 6 (TRAF6), to mitochondria, where it engages the protein ECSIT (evolutionarily conserved signalling intermediate in Toll pathways), which is implicated in mitochondrial respiratory chain assembly. Interaction with TRAF6 leads to ECSIT ubiquitination and enrichment at the mitochondrial periphery, resulting in increased mitochondrial and cellular ROS generation. ECSIT- and TRAF6-depleted macrophages have decreased levels of TLR-induced ROS and are significantly impaired in their ability to kill intracellular bacteria. Additionally, reducing macrophage mROS levels by expressing catalase in mitochondria results in defective bacterial killing, confirming the role of mROS in bactericidal activity. These results reveal a novel pathway linking innate immune signalling to mitochondria, implicate mROS as an important component of antibacterial responses and further establish mitochondria as hubs for innate immune signalling.  相似文献   

17.
Chao JR  Parganas E  Boyd K  Hong CY  Opferman JT  Ihle JN 《Nature》2008,452(7183):98-102
Cytokines affect a variety of cellular functions, including regulation of cell numbers by suppression of programmed cell death. Suppression of apoptosis requires receptor signalling through the activation of Janus kinases and the subsequent regulation of members of the B-cell lymphoma 2 (Bcl-2) family. Here we demonstrate that a Bcl-2-family-related protein, Hax1, is required to suppress apoptosis in lymphocytes and neurons. Suppression requires the interaction of Hax1 with the mitochondrial proteases Parl (presenilin-associated, rhomboid-like) and HtrA2 (high-temperature-regulated A2, also known as Omi). These interactions allow Hax1 to present HtrA2 to Parl, and thereby facilitates the processing of HtrA2 to the active protease localized in the mitochondrial intermembrane space. In mouse lymphocytes, the presence of processed HtrA2 prevents the accumulation of mitochondrial-outer-membrane-associated activated Bax, an event that initiates apoptosis. Together, the results identify a previously unknown sequence of interactions involving a Bcl-2-family-related protein and mitochondrial proteases in the ability to resist the induction of apoptosis when cytokines are limiting.  相似文献   

18.
NLRX1 is a regulator of mitochondrial antiviral immunity   总被引:1,自引:0,他引:1  
The RIG-like helicase (RLH) family of intracellular receptors detect viral nucleic acid and signal through the mitochondrial antiviral signalling adaptor MAVS (also known as Cardif, VISA and IPS-1) during a viral infection. MAVS activation leads to the rapid production of antiviral cytokines, including type 1 interferons. Although MAVS is vital to antiviral immunity, its regulation from within the mitochondria remains unknown. Here we describe human NLRX1, a highly conserved nucleotide-binding domain (NBD)- and leucine-rich-repeat (LRR)-containing family member (known as NLR) that localizes to the mitochondrial outer membrane and interacts with MAVS. Expression of NLRX1 results in the potent inhibition of RLH- and MAVS-mediated interferon-beta promoter activity and in the disruption of virus-induced RLH-MAVS interactions. Depletion of NLRX1 with small interference RNA promotes virus-induced type I interferon production and decreases viral replication. This work identifies NLRX1 as a check against mitochondrial antiviral responses and represents an intersection of three ancient cellular processes: NLR signalling, intracellular virus detection and the use of mitochondria as a platform for anti-pathogen signalling. This represents a conceptual advance, in that NLRX1 is a modulator of pathogen-associated molecular pattern receptors rather than a receptor, and identifies a key therapeutic target for enhancing antiviral responses.  相似文献   

19.
Clark IE  Dodson MW  Jiang C  Cao JH  Huh JR  Seol JH  Yoo SJ  Hay BA  Guo M 《Nature》2006,441(7097):1162-1166
Parkinson's disease is the second most common neurodegenerative disorder and is characterized by the degeneration of dopaminergic neurons in the substantia nigra. Mitochondrial dysfunction has been implicated as an important trigger for Parkinson's disease-like pathogenesis because exposure to environmental mitochondrial toxins leads to Parkinson's disease-like pathology. Recently, multiple genes mediating familial forms of Parkinson's disease have been identified, including PTEN-induced kinase 1 (PINK1; PARK6) and parkin (PARK2), which are also associated with sporadic forms of Parkinson's disease. PINK1 encodes a putative serine/threonine kinase with a mitochondrial targeting sequence. So far, no in vivo studies have been reported for pink1 in any model system. Here we show that removal of Drosophila PINK1 homologue (CG4523; hereafter called pink1) function results in male sterility, apoptotic muscle degeneration, defects in mitochondrial morphology and increased sensitivity to multiple stresses including oxidative stress. Pink1 localizes to mitochondria, and mitochondrial cristae are fragmented in pink1 mutants. Expression of human PINK1 in the Drosophila testes restores male fertility and normal mitochondrial morphology in a portion of pink1 mutants, demonstrating functional conservation between human and Drosophila Pink1. Loss of Drosophila parkin shows phenotypes similar to loss of pink1 function. Notably, overexpression of parkin rescues the male sterility and mitochondrial morphology defects of pink1 mutants, whereas double mutants removing both pink1 and parkin function show muscle phenotypes identical to those observed in either mutant alone. These observations suggest that pink1 and parkin function, at least in part, in the same pathway, with pink1 functioning upstream of parkin. The role of the pink1-parkin pathway in regulating mitochondrial function underscores the importance of mitochondrial dysfunction as a central mechanism of Parkinson's disease pathogenesis.  相似文献   

20.
以粗糙脉孢霉Neurospora crassa arg-13基因作为探针筛选λgt10 cDNA文库,获得全长arg-13cDNA并能表型拯救arg-13突变株,进行了arg-13cDNA测序,为了进一步证实arg-13的功能,构建了GALI诱导表达的arg-13cDNA的载体,该载体能表型互补酿酒酵母Saccharomyces cervisiae arg11突变株,证实arg-13编码线粒体内膜鸟铵酸转运酶 ,并表明酶母线粒体膜易位蛋白复合物能定位粗糙脉孢霉线粒体内膜蛋白质。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号