首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Sequence and domain structure of talin   总被引:45,自引:0,他引:45  
D J Rees  S E Ades  S J Singer  R O Hynes 《Nature》1990,347(6294):685-689
Talin is a high-molecular-weight cytoskeletal protein concentrated at regions of cell-substratum contact and, in lymphocytes, at cell-cell contacts. Integrin receptors are involved in the attachment of adherent cells to extracellular matrices and of lymphocytes to other cells. In these situations, talin codistributes with concentrations of integrins in the cell surface membrane. Furthermore, in vitro binding studies suggest that integrins bind to talin, although with low affinity. Talin also binds with high affinity to vinculin, another cytoskeletal protein concentrated at points of cell adhesion. Finally, talin is a substrate for the Ca2(+)-activated protease, calpain II, which is also concentrated at points of cell-substratum contact. To learn more about the structure of talin and its involvement in transmembrane connections between extracellular adhesions and the cytoskeleton, we have cloned and sequenced murine talin. We describe a model for the structure of talin based on this sequence and other data. Homologies between talin and other proteins define a novel family of submembranous cytoskeleton-associated proteins all apparently involved in connections to the plasma membrane.  相似文献   

2.
An interaction between vinculin and talin   总被引:4,自引:0,他引:4  
K Burridge  P Mangeat 《Nature》1984,308(5961):744-746
In cultured fibroblasts, microfilament bundles terminate at adhesion plaques (focal contacts), the specialized regions where the cells adhere most tightly to the underlying substrate. Vinculin is a protein concentrated in adhesion plaques and has been suggested as a possible link between the ends of the bundles of actin filaments and the plasma membrane. If vinculin is one protein in a chain of attachment between the bundles of microfilaments and the plasma membrane, it is important to identify other components which interact with vinculin. We have recently discovered a new protein in adhesion plaques which we refer to as talin. Here we show that talin binds to vinculin, which suggests that talin may be involved with vinculin in the attachment of microfilament bundles to the plasma membrane at the adhesion plaques.  相似文献   

3.
Izard T  Evans G  Borgon RA  Rush CL  Bricogne G  Bois PR 《Nature》2004,427(6970):171-175
Vinculin is a conserved component and an essential regulator of both cell-cell (cadherin-mediated) and cell-matrix (integrin-talin-mediated focal adhesions) junctions, and it anchors these adhesion complexes to the actin cytoskeleton by binding to talin in integrin complexes or to alpha-actinin in cadherin junctions. In its resting state, vinculin is held in a closed conformation through interactions between its head (Vh) and tail (Vt) domains. The binding of vinculin to focal adhesions requires its association with talin. Here we report the crystal structures of human vinculin in its inactive and talin-activated states. Talin binding induces marked conformational changes in Vh, creating a novel helical bundle structure, and this alteration actively displaces Vt from Vh. These results, as well as the ability of alpha-actinin to also bind to Vh and displace Vt from pre-existing Vh-Vt complexes, support a model whereby Vh functions as a domain that undergoes marked structural changes that allow vinculin to direct cytoskeletal assembly in focal adhesions and adherens junctions. Notably, talin's effects on Vh structure establish helical bundle conversion as a signalling mechanism by which proteins direct cellular responses.  相似文献   

4.
The ability of cells to form cell contacts, adhere to the extracellular matrix, change morphology, and migrate is essential for development, wound healing, metastasis, cell survival and the immune response. These events depend on the binding of integrin to the extracellular matrix, and assembly of focal adhesions, which are complexes comprising scaffolding and signalling proteins organized by adhesion to the extracellular matrix. Phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P(2)) regulates interactions between these proteins, including the interaction of vinculin with actin and talin. The binding of talin to beta-integrin is strengthened by PtdIns(4,5)P(2), suggesting that the basis of focal adhesion assembly is regulated by this lipid mediator. Here we show that the type I phosphatidylinositol phosphate kinase isoform-gamma 661 (PIPKI gamma 661), an enzyme that makes PtdIns(4,5)P(2), is targeted to focal adhesions by an association with talin. PIPKI gamma 661 is tyrosine phosphorylated by focal adhesion associated kinase signalling, increasing both the activity of phosphatidylinositol phosphate kinase and its association with talin. This defines a mechanism for spatial generation of PtdIns(4,5)P(2) at focal adhesions.  相似文献   

5.
Jiang G  Giannone G  Critchley DR  Fukumoto E  Sheetz MP 《Nature》2003,424(6946):334-337
Mechanical forces on matrix-integrin-cytoskeleton linkages are crucial for cell viability, morphology and organ function. The production of force depends on the molecular connections from extracellular-matrix-integrin complexes to the cytoskeleton. The minimal matrix complex causing integrin-cytoskeleton connections is a trimer of fibronectin's integrin-binding domain FNIII7-10 (ref. 4). Here we report a specific, molecular slip bond that was broken repeatedly by a force of 2 pN at the cellular loading rate of 60 nm x s(-1); this occurred with single trimer beads but not with monomer. Talin1, which binds to both integrins and actin filaments in vitro, is required for the 2-pN slip bond and rapid cytoskeleton binding. Further, inhibition of fibronectin binding to alpha(v)beta3 and deletion of beta3 markedly decreases the 2-pN force peak. We suggest that talin1 initially forms a molecular slip bond between closely packed fibronectin-integrin complexes and the actin cytoskeleton, which can apply a low level of force to fibronectin until many bonds form or a signal is received to activate a force response.  相似文献   

6.
Role of thrombin signalling in platelets in haemostasis and thrombosis.   总被引:37,自引:0,他引:37  
Platelets are critical in haemostasis and in arterial thrombosis, which causes heart attacks and other events triggered by abnormal clotting. The coagulation protease thrombin is a potent activator of platelets ex vivo. However, because thrombin also mediates fibrin deposition and because multiple agonists can trigger platelet activation, the relative importance of platelet activation by thrombin in haemostasis and thrombosis is unknown. Thrombin triggers cellular responses at least in part through protease-activated receptors (PARs). Mouse platelets express PAR3 and PAR4 (ref. 9). Here we show that platelets from PAR4-deficient mice failed to change shape, mobilize calcium, secrete ATP or aggregate in response to thrombin. This result demonstrates that PAR signalling is necessary for mouse platelet activation by thrombin and supports the model that mouse PAR3 (mPAR3) does not by itself mediate transmembrane signalling but instead acts as a cofactor for thrombin cleavage and activation of mPAR4 (ref. 10). Importantly, PAR4-deficient mice had markedly prolonged bleeding times and were protected in a model of arteriolar thrombosis. Thus platelet activation by thrombin is necessary for normal haemostasis and may be an important target in the treatment of thrombosis.  相似文献   

7.
Stimulus-response (S-R) coupling in platelets requires an intermediary other than an elevation in cytosolic free calcium ([Ca2+]i). While an increase in [Ca2+]i is essential in S-R coupling, effecting phosphorylation of myosin of relative molecular mass (Mr) 20,000 (20 K), platelet activation is also associated with phosphorylation of a 40K protein, which can occur in the absence of changes in [Ca2+]i. The 40K protein is the substrate for protein kinase C (PKC). Mounting evidence suggests that activation of PKC by diacylglycerol is the other signal involved in S-R coupling. Although phosphorylation of the 40K protein is associated with certain platelet functional responses, no precise role has been accredited to it. Recently, we and others have described several proteins (collectively known as lipocortin) which inhibit phospholipase A2 (PLA2). One of the most conspicuous proteins of this group is a 40K peptide whose inhibitory activity can be suppressed by prior phosphorylation. We hypothesized that the 40K protein described in platelets may possess anti-PLA2 activity and that phosphorylation by PKC, suppressing its inhibitory activity, may represent the mechanism underlying mobilization of arachidonic acid, the precursor of prostaglandins. The results of the present study strongly support this hypothesis.  相似文献   

8.
Clostridial neurotoxins, including tetanus toxin and the seven serotypes of botulinum toxin (A-G), are produced as single chains and cleaved to generate toxins with two chains joined by a single disulphide bond (Fig. 1). The heavy chain (M(r) 100,000 (100K)) is responsible for specific binding to neuronal cells and cell penetration of the light chain (50K), which blocks neurotransmitter release. Several lines of evidence have recently suggested that clostridial neurotoxins could be zinc endopeptidases. Here we show that tetanus and botulinum toxins serotype B are zinc endopeptidases, the activation of which requires reduction of the interchain disulphide bond. The protease activity is localized on the light chain and is specific for synaptobrevin, an integral membrane protein of small synaptic vesicles. The rat synaptobrevin-2 isoform is cleaved by both neurotoxins at the same single site, the peptide bond Gln 76-Phe 77, but the isoform synaptobrevin-1, which has a valine at the corresponding position, is not cleaved. The blocking of neurotransmitter release of Aplysia neurons injected with tetanus toxin or botulinum toxins serotype B is substantially delayed by peptides containing the synaptobrevin-2 cleavage site. These results indicate that tetanus and botulinum B neurotoxins block neurotransmitter release by cleaving synaptobrevin-2, a protein that, on the basis of our results, seems to play a key part in neurotransmitter release.  相似文献   

9.
Patterns of elevated free calcium and calmodulin activation in living cells.   总被引:18,自引:0,他引:18  
K Hahn  R DeBiasio  D L Taylor 《Nature》1992,359(6397):736-738
The temporal and spatial dynamics of intracellular signals and protein effectors are being defined as a result of imaging using fluorescent reagents within living cells. We have described a new class of fluorescent analogues termed optical biosensors, which sense chemical or molecular events through their effects on protein transducers. One example of this new class of indicators is MeroCaM, an environmentally sensitive fluorophore which when it is attached to calmodulin reflects the activation of calmodulin by calcium in vitro. We report here that the rise in free calcium and MeroCaM activation occur in the same period during serum stimulation of quiescent fibroblasts. MeroCaM activation also correlates with the spatial pattern of increased free calcium and the contraction of transverse fibres during wound healing. Finally, migrating fibroblasts in the later stages of wound-healing exhibit an increasing gradient of free calcium and MeroCaM activation from the front to the rear.  相似文献   

10.
Membrane phosphoinositides control a variety of cellular processes through the recruitment and/or regulation of cytosolic proteins. One mechanism ensuring spatial specificity in phosphoinositide signalling is the targeting of enzymes that mediate their metabolism to specific subcellular sites. Phosphatidylinositol phosphate kinase type 1 gamma (PtdInsPKI gamma) is a phosphatidylinositol-4-phosphate 5-kinase that is expressed at high levels in brain, and is concentrated at synapses. Here we show that the predominant brain splice variant of PtdInsPKI gamma (PtdInsPKI gamma-90) binds, by means of a short carboxy-terminal peptide, to the FERM domain of talin, and is strongly activated by this interaction. Talin, a principal component of focal adhesion plaques, is also present at synapses. PtdInsPKI gamma-90 is expressed in non-neuronal cells, albeit at much lower levels than in neurons, and is concentrated at focal adhesion plaques, where phosphatidylinositol-4,5-bisphosphate has an important regulatory role. Overexpression of PtdInsPKI gamma-90, or expression of its C-terminal domain, disrupts focal adhesion plaques, probably by local disruption of normal phosphoinositide balance. These findings define an interaction that has a regulatory role in cell adhesion and suggest new similarities between molecular interactions underlying synaptic junctions and general mechanisms of cell adhesion.  相似文献   

11.
Many cellular functions are regulated by activation of cell-surface receptors that mobilize calcium from internal stores sensitive to inositol 1,4,5-trisphosphate (Ins(1,4,5)P3). The nature of these internal calcium stores and their localization in cells is not clear and has been a subject of debate. It was originally suggested that the Ins(1,4,5)P3-sensitive store is the endoplasmic reticulum, but a new organelle, the calciosome, identified by its possession of the calcium-binding protein, calsequestrin, and a Ca2+-ATPase-like protein of relative molecular mass 100,000 (100K), has been described as a potential Ins(1,4,5)P3-sensitive calcium store. Direct evidence on whether the calciosome is the Ins(1,4,5)P3-sensitive store is lacking. Using monoclonal antibodies raised against the Ca2+-ATPase of skeletal muscle sarcoplasmic reticulum, we show that bovine adrenal chromaffin cells contain two Ca2+-ATPase-like proteins with distinct subcellular distributions. A 100K Ca2+-ATPase-like protein is diffusely distributed, whereas a 140K Ca2+-ATPase-like protein is restricted to a region in close proximity to the nucleus. In addition, Ins(1,4,5)P3-generating agonists result in a highly localized rise in cytosolic calcium concentration ([Ca2+]i) initiated in a region close to the nucleus, whereas caffeine results in a rise in [Ca2+]i throughout the cytoplasm. Our results indicate that chromaffin cells possess two calcium stores with distinct Ca2+-ATPases and that the organelle with the 100K Ca2+-ATPase is not the Ins(1,4,5)P3-sensitive store.  相似文献   

12.
Phosphoinositide-3-OH kinase (PI(3)K), activated through growth factor stimulation, generates a lipid second messenger, phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P3). PtdIns(3,4,5)P3 is instrumental in signalling pathways that trigger cell activation, cytoskeletal rearrangement, survival and other reactions. However, some targets of PtdIns(3,4,5)P3 are yet to be discovered. We demonstrate that SWAP-70, a unique signalling protein, specifically binds PtdIns(3,4,5)P3. On stimulation by growth factors, cytoplasmic SWAP-70, which is dependent on PI(3)K but independent of Ras, moved to cell membrane rearrangements known as ruffles. However, mutant SWAP-70 lacking the ability to bind PtdIns(3,4,5)P3 blocked membrane ruffling induced by epidermal growth factor or platelet-derived growth factor. SWAP-70 shows low homology with Rac-guanine nucleotide exchange factors (GEFs), and catalyses PtdIns(3,4,5)P3-dependent guanine nucleotide exchange to Rac. SWAP-70-deficient fibroblasts showed impaired membrane ruffling after stimulation with epidermal growth factor, and failed to activate Rac fully. We conclude that SWAP-70 is a new type of Rac-GEF which, independently of Ras, transduces signals from tyrosine kinase receptors to Rac.  相似文献   

13.
S Ohno  Y Emori  S Imajoh  H Kawasaki  M Kisaragi  K Suzuki 《Nature》1984,312(5994):566-570
Calcium-dependent protease (calcium protease) is apparently involved in a variety of cellular processes. Here we have attempted to clarify the role and regulatory mechanism of calcium protease by analysing its structure. The complete primary structure of calcium protease (relative molecular mass (Mr) 80,000 (80K), 705 amino acids) was deduced from the nucleotide sequence of cloned complementary DNA. The protein contains four distinct domains, and we have observed a marked similarity between the second and fourth domains and the papain-like thiol proteases and calmodulin-like calcium-binding proteins, respectively. This finding suggests that calcium protease arose from the fusion of genes for proteins of completely different function and evolutionary origin. Further, it provides functional insight into cellular regulatory mechanisms mediated by Ca2+ through calcium-binding proteins.  相似文献   

14.
Structural basis for vinculin activation at sites of cell adhesion   总被引:1,自引:0,他引:1  
Vinculin is a highly conserved intracellular protein with a crucial role in the maintenance and regulation of cell adhesion and migration. In the cytosol, vinculin adopts a default autoinhibited conformation. On recruitment to cell-cell and cell-matrix adherens-type junctions, vinculin becomes activated and mediates various protein-protein interactions that regulate the links between F-actin and the cadherin and integrin families of cell-adhesion molecules. Here we describe the crystal structure of the full-length vinculin molecule (1,066 amino acids), which shows a five-domain autoinhibited conformation in which the carboxy-terminal tail domain is held pincer-like by the vinculin head, and ligand binding is regulated both sterically and allosterically. We show that conformational changes in the head, tail and proline-rich domains are linked structurally and thermodynamically, and propose a combinatorial pathway to activation that ensures that vinculin is activated only at sites of cell adhesion when two or more of its binding partners are brought into apposition.  相似文献   

15.
The mouse mutant mnd2 (motor neuron degeneration 2) exhibits muscle wasting, neurodegeneration, involution of the spleen and thymus, and death by 40 days of age. Degeneration of striatal neurons, with astrogliosis and microglia activation, begins at around 3 weeks of age, and other neurons are affected at later stages. Here we have identified the mnd2 mutation as the missense mutation Ser276Cys in the protease domain of the nuclear-encoded mitochondrial serine protease Omi (also known as HtrA2 or Prss25). Protease activity of Omi is greatly reduced in tissues of mnd2 mice but is restored in mice rescued by a bacterial artificial chromosome transgene containing the wild-type Omi gene. Deletion of the PDZ domain partially restores protease activity to the inactive recombinant Omi protein carrying the Ser276Cys mutation, suggesting that the mutation impairs substrate access or binding to the active site pocket. Loss of Omi protease activity increases the susceptibility of mitochondria to induction of the permeability transition, and increases the sensitivity of mouse embryonic fibroblasts to stress-induced cell death. The neurodegeneration and juvenile lethality in mnd2 mice result from this defect in mitochondrial Omi protease.  相似文献   

16.
A Horwitz  K Duggan  C Buck  M C Beckerle  K Burridge 《Nature》1986,320(6062):531-533
Many observations suggest the presence of transmembrane linkages between the cytoskeleton and the extracellular matrix. In fibroblasts both light and electron microscopic observations reveal a co-alignment between actin filaments at the cell surface and extracellular fibronectin. These associations are seen at sites of cell matrix interaction, frequently along stress fibres and sometimes where these bundles of microfilaments terminate at adhesion plaques (focal contacts). Non-morphological evidence also indicates a functional linkage between the cytoskeleton and extracellular matrix. Addition of fibronectin to transformed cells induces flattening of the cells and a reorganization of the actin cytoskeleton, with the concomitant appearance of arrays of stress fibres. Conversely, disruption of the actin cytoskeleton by treatment with cytochalasin B leads to release of fibronectin from the cell surface. As yet, there is no detailed knowledge of the molecules involved in this transmembrane linkage, although several proteins have been suggested as candidates in the chain of attachment between bundles of actin filaments and the cytoplasmic face of the plasma membrane: these include vinculin, alpha-actinin and talin, each one having been identified at regions where bundles of actin filaments interact with the plasma membrane and underlying cell-surface fibronectin. Recently, the cell-substrate attachment (CSAT) antigen has been identified as a plasma membrane receptor for fibronectin, raising the possibility that this glycoprotein complex may serve as a bridge between fibronectin and one or more of the underlying cytoskeletal components mentioned. Here we have investigated the interaction of the purified CSAT antigen with these cytoskeletal components, and we demonstrate an interaction specifically between the CSAT antigen and talin.  相似文献   

17.
Y Rivière  V Blank  P Kourilsky  A Isra?l 《Nature》1991,350(6319):625-626
  相似文献   

18.
Identification of the platelet ADP receptor targeted by antithrombotic drugs   总被引:97,自引:0,他引:97  
Platelets have a crucial role in the maintenance of normal haemostasis, and perturbations of this system can lead to pathological thrombus formation and vascular occlusion, resulting in stroke, myocardial infarction and unstable angina. ADP released from damaged vessels and red blood cells induces platelet aggregation through activation of the integrin GPIIb-IIIa and subsequent binding of fibrinogen. ADP is also secreted from platelets on activation, providing positive feedback that potentiates the actions of many platelet activators. ADP mediates platelet aggregation through its action on two G-protein-coupled receptor subtypes. The P2Y1 receptor couples to Gq and mobilizes intracellular calcium ions to mediate platelet shape change and aggregation. The second ADP receptor required for aggregation (variously called P2Y(ADP), P2Y(AC), P2Ycyc or P2T(AC)) is coupled to the inhibition of adenylyl cyclase through Gi. The molecular identity of the Gi-linked receptor is still elusive, even though it is the target of efficacious antithrombotic agents, such as ticlopidine and clopidogrel and AR-C66096 (ref. 9). Here we describe the cloning of this receptor, designated P2Y12, and provide evidence that a patient with a bleeding disorder has a defect in this gene. Cloning of the P2Y12 receptor should facilitate the development of better antiplatelet agents to treat cardiovascular diseases.  相似文献   

19.
Von Willebrand factor (vWF), a multifunctional haemostatic glycoprotein derived from endothelial cells and megakaryocytes, mediates platelet adhesion to injured subendothelium and binds coagulation factor VIII in the circulation. Native vWF is a disulphide-bonded homopolymer; the monomeric subunits, of apparent relative molecular mass (Mr) 220,000 (220K) are derived from an intracellular precursor estimated at 260-275K. Multimer assembly is preceded by the formation of dimers, linked near their C-termini, which then assemble into filamentous polymers. The importance of the removal of the large vWF pro-polypeptide during multimer assembly, and whether this or other stages of the complex post-translational processing require components specific to endothelial cells or megakaryocytes, is unknown. Here we report an analysis of the complete sequence of pre-pro-vWF and expression of the molecule in heterologous cells. The vWF precursor is composed of several repeated subdomains. When expressed in COS and CHO cells, it is cleaved and assembled into biologically active high relative molecular mass disulphide bonded multimers. This suggests that the information for assembly of this complex molecule resides largely within its primary structure.  相似文献   

20.
P Burn  A Rotman  R K Meyer  M M Burger 《Nature》1985,314(6010):469-472
The interaction of the cytoskeleton with plasma membranes may be mediated by vinculin, alpha-actinin and other proteins; alpha-actinin can interact specifically with model membranes only if they contain diacylglycerol and palmitic acid. On stimulation of platelets by thrombin, which leads to a reorganization of the cytoskeleton, diacylglycerol is produced rapidly, simultaneously with the disappearance of phosphatidylinositol. One important function of the diacylglycerol produced in platelets may be the activation of the Ca2+-and phospholipid-dependent protein kinase C. We show here that, in the presence of diacylglycerol and palmitic acid, a supramolecular complex between alpha-actinin and actin is formed in vitro. In the electron microscope, this complex displays substructures similar to those of microfilament bundles in vivo. Furthermore, such alpha-actinin/lipid complexes can also be formed in situ during the stimulation of blood platelet aggregation. Thus, alpha-actinin may be one of the proteins directly involved in structures connecting the cytoskeleton to cell membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号