首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The microstructure evolution and damage development of the third-generation Al–Li alloy 2060 (T8) were studied using in situ bending tests. Specimens were loaded with a series of punches of different radii, and the microstructure evolution was studied by scanning electron microscopy, electron backscatter diffraction, and digital image correlation (DIC) methods. The evolution of the microscopic fracture strain distribution and microstructure in 2060 alloy during bending was characterized, where the dispersion distribution of precipitates was recorded by backscattered electron imaging and later inputted into a DIC system for strain calculations. The experimental results showed that strain localization in the free surface of bent specimens induced damage to the microstructure. The region of crack initiation lies on the free surface with maximum strain, and the shear crack propagates along the macro-shear band in the early stages of bending. Crack propagation in the later stages was interpreted on the basis of the conventional mechanism of ductile fracture.  相似文献   

2.
AZ31 magnesium alloy sheets with different strong textures were cryorolled at the liquid-nitrogen temperature to the strain of 4% and 8%. The microstructure and texture of the rolled sheets were investigated via scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), and X-ray diffraction (XRD). The mechanical properties of the sheets were tested through in-plane uniaxial tensile tests at ambient temperature. The tensile stress was exerted in the rolling direction (RD) and transverse directions (TD). The microstructural and textural evolutions of the alloy during cryorolling were investigated. Due to active twining during rolling, the initial texture significantly influenced the microstructural and textural evolutions of the rolled sheets. A {1012} extension twin was found as the dominated twin-type in the cryorolled samples. After cryogenic rolling, the ductility of the samples decreased while the strength increased. Twinning also played an important role in explaining the mechanical differences between the rolled samples with different initial textures. The samples were significantly strengthened by the high stored energy accumulated from cryorolling.  相似文献   

3.
将薄带连铸技术引入因瓦合金的制备流程,利用金相显微镜、XRD、EBSD、微观硬度计、拉伸实验机等设备,围绕薄带连铸因瓦合金的组织织构演化及力学性能开展研究.结果表明:在钢液过热度较高的条件下,因瓦合金凝固组织以粗大的柱状奥氏体晶粒为主,织构为强烈的λ纤维织构(<100>//ND).冷轧过程中形成大量的变形亚结构,使硬度(HV)由铸态的165提高至230~240,冷轧织构以典型的铜型织构(112<111>)及S型织构(123<634>)为主.0.7mm厚冷轧板经900℃退火10min,形成包含大量退火孪晶的再结晶组织,织构较漫散,其屈服强度、抗拉强度和断后延伸率分别达293MPa,433MPa和33.4%,与传统流程制备的0.7mm厚因瓦合金的性能相当.  相似文献   

4.
The effect of particle size distribution on the microstructure, texture, and mechanical properties of Al–Mg–Si–Cu alloy was investigated on the basis of the mechanical properties, microstructure, and texture of the alloy. The results show that the particle size distribution influences the microstructure and the final mechanical properties but only slightly influences the recrystallization texture. After the pre-aging treatment and natural aging treatment (T4P treatment), in contrast to the sheet with a uniform particle size distribution, the sheet with a bimodal particle size distribution of large constituent particles and small dispersoids exhibits higher strength and a somewhat lower plastic strain ratio (r) and strain hardening exponent (n). After solution treatment, the sheet with a bimodal particle size distribution of large constituent particles and small dispersoids possesses a finer and slightly elongated grain structure compared with the sheet with a uniform particle size distribution. Additionally, they possess almost identical weak recrystallization textures, and their textures are dominated by CubeND {001}<310> and P {011}<122> orientations.  相似文献   

5.
电子产品关键部件小型化对黄铜合金带材折弯性能提出了更高的要求。研究了微观组织和织构对H65黄铜带材折弯性能的影响规律和影响机制。结果表明:带材平行于轧向折弯较垂直于轧向折弯更易于产生表面褶皱和裂纹,且随着折弯半径的减小,折弯性能降低。折弯变形过程中带材外表面易形成剪切带,所产生的剪切变形是造成表面褶皱和开裂的主要原因。微观组织不均匀、较强的Brass织构易导致带材折弯过程中产生剪切变形,造成带材折弯性能下降。通过调控热处理工艺来调整带材织构,减少或抑制剪切带的产生,能够提升带材的折弯性能。  相似文献   

6.
Effects of Al addition to a Mg–Sn–Ca ternary alloy on its microstructure and tensile properties after extrusion were studied via extrusion of Mg-1.0 Sn-0.5 Ca-x Al(x = 0, 0.8, 2.4 wt%) sheets and analysis of the extruded materials.The results showed that Al addition not only refined the grain size(from 9.8 ± 0.7 μm to 8.3 ± 0.4 μm and7.6 ± 0.5 μm) but also accelerated the generation of more second phase(from 0.98 to 1.72 and 4.32%). Except for the CaMgSn and Mg2Ca in Mg-1.0Sn-0.5 Ca a...  相似文献   

7.
AZ31 magnesium alloy sheets were prepared by a conventional extrusion (CE) and a novel integrated extrusion with side direction strain (SE). The microstructure characterizations, crystallographic texture and mechanical property tests were carried out and compared between the extruded Mg alloy sheets processed by CE and SE. The results indicated that the SE sheets exhibited an excellent combination of strength and ductility. To reveal the side strain effect, the finite element model was employed to investigate the effective stress and strain behavior of the AZ31 magnesium alloy sheets during CE and SE processes. It was found that the SE process was effective in weakening the stress and strain concentration. This implied that it developed an additional side direction strain through the sheet thickness during the hot extrusion. Meanwhile, the side strain shear paths could promote the local accumulation of dynamically recrystallized grains and increase the random high-angle boundaries to achieve weak (0002) basal texture. Important factors including the side strain path and extrusion parameters need to be taken into account to understand the deformation mechanism and microstructure evolution.  相似文献   

8.
Microstructure,texture and mechanical properties of Mg-5 Zn-0.3 Y-0.2 Ce alloys with the addition of trace xCa(x=0,0.3,0.6 wt%) were systematically investigated in this work.The results revealed that more secondary eutectic phases and smaller grain size of as-cast microstructure could be found with increasing Ca content.After hot extrusion,the Ca-free alloy showed a uniformly recrystallized grain structure,while the Ca-containing alloys possessed a bimodal grain structure composed of fine dynamic recrystallized(DRXed) grains with a size of several microns and un-recrystallized coarse grains.EBSD analysis showed that the three extruded alloys had a fiber texture of(0001) basal plane aligned with the extrusion direction.Texture intensity of the DRXed region was weaker than the deformed region.The extruded alloy with the addition of 0.6 wt% Ca exhibited the highest yield strength of 321 MPa due to the smallest DRXed grain size,the deformed region with strong basal texture and dense nanosized precipitates.  相似文献   

9.
Taking extruded Al-Zn-Mg-Cu alloy (7A04 alloy) bars as the research object, the effect and mechanism of pre-annealing treatments on the microstructure and mechanical properties of the aged alloy bars were investigated. The results show that a pre-annealing treatment at 350℃ for 15 h before a T6 treatment substantially reduced the sensitivity of the microstructure and mechanical properties of the extruded 7A04 aluminum alloy specimens toward the extrusion temperature. The average grain sizes of the specimens extruded at 390 and 430℃ after T6 treatment were 3.4 and 8.1 μm, respectively, and their elongations to failure were 7.0% and 9.2%, respectively. However, after pre-annealing + T6 treatment, the differences in both the grain sizes and the elongations of the specimens became small, i.e., their average grain sizes were 3.2 and 3.8 μm and their elongations were 12.0% and 13.3%, respectively. For the specimens extruded at the same temperature, pre-annealing treatment obviously improved the plasticity of the alloy, which is attributed to an increase in soft texture or to grain refinement in the specimens as a result of the pre-annealing + T6 treatment.  相似文献   

10.
利用背散射电子衍射微织构分析技术及X射线衍射织构分析技术,结合对取向硅钢薄带再结晶各阶段退火板磁性能的分析,系统研究了其形变再结晶过程中的组织及织构演变。结果表明,薄带内原始高斯晶粒取向发生绕TD轴向{111}<112>的转变,同时晶粒取向还表现出绕RD轴的附加转动,这种附加转动及其导致的表层微弱立方形变组织可为再结晶立方织构的形成提供核心。退火各阶段样品磁性能的变化对应了{110}-{100}<001>有益织构及其他织构的强弱转变以及再结晶晶粒不均匀程度的变化,综合织构类型及晶粒尺寸的变化推断发生了二次及三次再结晶过程。升温过程再结晶织构演变主要体现了织构诱发机制,也即与基体存在绕<001>轴取向关系的晶粒长大优势结合高斯织构的抑制效应发挥作用;而在高温长时间保温后三次再结晶过程,{110}低表面能诱发异常长大发挥主要作用使得最终得到锋锐的高斯织构。  相似文献   

11.
系统研究了水韧处理对TiC基高锰钢结合金力学性能的影响,并通过分析合金在处理前后显微组织结构和微区成分的变化阐述了其中的内在关系.经过1 050℃×6h水韧处理后,真空烧结试样的抗弯强度和冲击韧性分别提高154.6%和125.3%;对低压烧结试样则分别提高61.81%和45.38%;对真空烧结+低压烧结试样也分别提高65.59%和32.90%.研究结果表明,水韧处理能够显著提高烧结态TiC基高锰钢结合金的抗弯强度和冲击韧性.因此,对烧结态TiC基钢结合金进行水韧处理或者高温成分均匀化热处理十分必要,有利于充分发挥其性能潜力.  相似文献   

12.
The influence of different rolling processes on precipitation behaviour, crystallography texture, grain morphology, and their consequent effects on tensile properties for Al–Cu–Li alloy AA2195 was investigated in the present work. The H-T8 samples (hot rolled ?+ ?T8) presented better tensile strength and ductility (with serious strength anisotropy) than the HC-T8 samples (hot rolled ?+ ?cold rolled ?+ ?T8), due to their different microstructures and textures. The higher dislocation density was found in the H-T8 samples, which promoted the nucleation of main strengthening phase T1 in the matrix and suppressed the grain boundary precipitation, resulted in better strength and ductility. The increase of the dynamic recovery (DRV) during hot rolling enhanced the generation of Brass texture, and brought serious strength anisotropy. The cold rolling was performed after the hot-rolling process for the HC-T8 samples which increased deformation energy and resulted in full recrystallization of the deformed microstructure during the following solution treatment. The formation of recrystallized microstructure reduced the dislocation density and the heterogeneous precipitate nucleation positions which limited the strengthening phase precipitation in matrix and accelerated the precipitation along grain boundaries, resulted in fewer T1 precipitates, coarse grain-boundary precipitates (GBPs), and wider precipitate-free zones (PFZs). The localized strain may be concentrated on the grain boundary to induce the dislocation pile-up, breaking of the GBPs, and intergranular fracture during stretching.  相似文献   

13.
采用X射线四环衍射技术研究了大应变量冷轧Cu-45%Ni (原子百分含量)合金基带冷轧织构的形成、低温回复以及再结晶过程中织构的演变行为。结果表明:Cu-45%Ni合金经大应变量冷轧后形成以S取向、Copper取向和Brass取向含量为主的Copper型轧制织构;在低温回复过程,仍为Copper型轧制织构,并且其轧制织构的强度有所增强;在再结晶过程,立方取向的含量迅速增加,各轧制取向含量均迅速减少,表明S取向、Copper取向和Brass取向在再结晶过程中均被逐渐长大的立方晶粒所吞并。在此基础上,采用背散射电子衍射技术表征其高温下强立方织构的形成过程,Cu-45%Ni合金基带经1000℃保温1 h后,其立方织构含量高达98.6%(<10°),大角度晶界的含量仅为13.6%,其中包含约5%的Σ3晶界。  相似文献   

14.
The microstructure of CaO-P2O5-SiO2-MgO-F glass-ceramics during crystallization were investigated and the crystallized phases wereidentified with DTA (Differential Thermal Analysis), SEM (Scanning Electron Microscope) and XRD (X- ray Diffraction) techniques. The mechanical properties such as bending strength and fracture toughness, as well as their changes with advancing crystallization were determined. The results show that the changes of the mechanical properties are correlated with the microstructures. The sample heated up to 810℃ and soaked for 4 h has smaller crystalline size and less volum fraction of fluorophlogopite, so it has higher bending strength (about 190 MPa), and higher crack toughness (about 2.63 MPa·m1/2).  相似文献   

15.
通过力学性能测试、X线衍射和EBSD(电子背散射衍射分析)等方法研究Ta-7.5%W(质量分数)合金箔材在真空中1 200℃下退火1 h后的力学性能、织构和微观组织。研究结果表明:退火态的Ta-7.5%W合金箔材在沿着横向和轧向拉伸过程中表现出各向异性,其中轧向的抗拉强度达到753 MPa,伸长率达到13.4%,轧向的性能均优于横向性能,这是由于样品中主要织构组分的晶粒沿横向和轧向拉伸开启的滑移系是不一样的。样品中主要形成了3类织构,分别为轧面法向平行于<100>的θ-纤维织构、轧面法向平行于<111>的γ纤维,还有轧向平行于<110>的α纤维织构,其中主要的织构为(112)[1 10]和(111)[1 21],所占的体积分数分别10.2%和11.2%;由不同取向晶粒中的线取向差分布图分析可以看出(111)[1 21]取向的晶粒形成的位错亚结构之间的取向差很大,最大达到8.3°,亚晶之间的平均取向差也达到7°;(001)[1 10]取向的晶粒中形成的位错亚结构之间的取向差小很多,取向差最大也只有2.2°,平均取向差只有1.7°。  相似文献   

16.
In this paper, the effects of rheo-diecast process parameters and T6 heat treatment on the microstructure and mechanical properties of the rheo-diecasting (RDC) semi-solid A390 alloy prepared through pure copper serpentine channel were investigated. The results indicate that the mechanical properties of the RDC samples change with the pouring temperature and injection pressure. In this case, a lower pouring temperature results in better tensile strength and elongation of the RDC A390 alloy; however, the tensile strength and elongation decrease when the pouring temperature decreases to 660°C. Higher injection pressures result in the improved mechanical properties of the RDC A390 alloy. To some extent, T6 heat treatment improves the tensile strength and ductility of the RDC A390 alloy compared to those of the non-heat treated alloy. However, when the pouring temperature and injection pressure are greater than 670°C and 70 MPa, respectively, the mechanical properties are sharply diminished.  相似文献   

17.
研究了水韧处理对TiC基高锰钢结合金力学性能的影响,并通过分析合金在处理前后显微组织结构和微区成分的变化,阐述了其中的内在关系.经过1 050℃×6h水韧处理后,真空烧结试样的抗弯强度和冲击韧性分别提高了154.6%和125.3%;低压烧结试样则分别提高了61.81%和45.38%;真空烧结+低压烧结试样也分别提高了65.59%和32.90%.研究结果表明,水韧处理能够显著提高烧结态TiC基高锰钢结合金的抗弯强度和冲击韧性.  相似文献   

18.
钛合金因其优异的力学性能和生物相容性,广泛用于椎弓根螺钉的制备。椎弓根螺钉植入人体后,受脊柱的屈曲伸展和横向弯曲作用,螺钉发生疲劳弯曲最终导致螺钉松动甚至断裂,影响植入稳定性。因此有必要对钛合金椎弓根螺钉抗弯性能进行研究。通过单因素实验与正交实验分析设计不同结构参数椎弓根螺钉,结合有限元分析与力学实验的方法,使用三点弯曲试验对钛合金椎弓根螺钉的抗弯性能进行模拟仿真与实验验证,并对螺钉结构参数进行优化。结果表明,模拟结果与实验结果吻合较好,螺钉结构参数对抗弯性能的影响顺序为外径大于螺纹深度大于螺距,最佳参数为螺钉外径5.5 mm、螺纹深度0.65 mm、螺距1.60 mm,优化后的螺钉对比标准椎弓根螺钉,最大支反力提高74.7%。  相似文献   

19.
The effects of V-bending process, continuous bending process and combination process on the microstructure and mechanical properties and formability of an AZ31 magnesium alloy sheet were investigated. The experimental results showed that no twins were found in the microstructure of all samples after processes due to the fine grain. The V-bending and continuous bending processes were proved to be an effective approach to modify the mechanical properties and formability. While the samples after the combination process exhibited better mechanical properties and formability than the single processed sample. The yield strength significantly decreased with the value of 100 MPa and the fracture elongation enhanced to 18.3% at room temperature. The Erichsen value was 5.0 mm which was significantly increased by 117% compared with as-received sample. The superior formability of combination processed samples was mainly attributed to the smaller r-value and n-value.  相似文献   

20.
The as-cast Mg–6Li–4Zn-x Mn alloys were prepared and extruded at 280℃ with an extrusion ratio of 25:1. The effects of Mn content on the microstructure and mechanical properties of Mg–6Li–4Zn-x Mn alloys were investigated in this study. The XRD results show that Mg–6Li–4Zn–x Mn alloys consisted of α-Mg(hcp) + β-Li(bcc)duplex structured matrix, Mg Li2Zn and Mn phases. The grains of the extruded Mg–6Li–4Zn–x Mn alloys were refined by dynamic recrystallization during the extrusion process...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号