首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Xu Maojun 《自然科学进展》2007,17(12):1397-1404
The endogenous signaling network of plants plays important roles in mediating the exogenous factor-induced biosynthesis of secondary metabolites. Nitric oxide (NO) has emerged as a key signaling molecule in plants recently. Numerous studies demonstrated that the main signaling molecules such as salicylic acid (SA), jasmonic acid (JA), reactive oxygen species (ROS), and NO were not only involved in regulating plant secondary metabolite biosynthesis but also interacted to form a complex signaling network by mutual inhibition and/or synergy. The recent progress in the signal network of plant secondary metabolite biosynthesis has been discussed in this paper. Furthermore, we propose a hypothetical model to show that NO might act as a potential molecular switch in the signaling network leading to plant secondary metabolite biosynthesis.  相似文献   

2.
Nitric oxide (NO) and Jasmonic acid (JA) are two key signaling molecules involved in many and diverse biological pathways in plants. Growing evidence suggested that NO signaling interacts with JA signaling. In this work, Our experiment showed that NO exists in guard cell of Vicia faba L., and NO is involved in signal transduction of JAinduced stomata closuring: ( i ) JA enhances NO synthesis in guard cell; ( ii ) both JA and NO induced stomatal closure, and had dose response to their effects; ( iU ) there are synergetic correlation between JA and lower NO concentration in regulation of stomatal movement; (iV) JA-induced stomatal closure was largely prevented by 2-phenyl-4,4,5,5-tetramethylimidazoline-l-oxyl-3-oxide (PTIO), a specific NO scavenger. An inhibitor of NO synthase (NOS) in mammalian cells, N^G-nitro-L-Arg-methyl eater (L-NAME) also inhibits plant NOS, repressing JA-induced NO generation and JA-induced stomatal closure. We presumed that NO mainly comes from NOS after JA treatment.  相似文献   

3.
蛋白质S-亚硝基化是NO与蛋白质的半胱氨酸残基共价连接形成S-亚硝基硫醇的过程.叶绿体内快速变化的氧化还原环境容易导致蛋白质S-亚硝基化修饰发生.综述了植物逆境应答过程中叶绿体蛋白质S-亚硝基化参与调节的光合电子传递、卡尔文循环、抗氧化系统、蛋白质合成、蛋白质加工与周转、Ca~(2+)介导的信号转导、氮同化、硫同化,以及四吡咯化合物合成等途径,为全面理解植物逆境应答过程的NO调控网络机制提供了线索.  相似文献   

4.
蛋白质S-亚硝基化是一氧化氮(NO)与蛋白质半胱氨酸残基(Cys)共价连接形成S-亚硝基硫醇(-SNO)的过程,被认为是植物中体现NO生物活性的最重要途径.线粒体在依赖S-亚硝基化的NO信号转导中起关键作用.综述了应用蛋白质组学技术鉴定的植物线粒体S-亚硝基化蛋白质的特征,为认识线粒体NO调控网络体系中重要的信号与代谢通路(如光呼吸、三羧酸循环、氧化磷酸化、活性氧分子(ROS)稳态,以及蛋白质加工与周转)提供了线索.  相似文献   

5.
β-Glucosidase has been reported to induce the production of herbivore-induced plant volatiles. However, how it works remains unclear. Here, we investigated the levels of salicylic acid (SA), jasmonic acid (JA), ethylene, and H2O2, all of which are known signaling molecules that play important roles in induced plant defense in rice plants treated with β-glucosidase, and compared these to levels in plants infested by the rice brown planthopper Nilaparvata lugens (Stal). Results showed that wounding and treatment by β-glucosidase increased the levels of SA, ethylene, and H2O2, but not JA, in all plants compared to control plants. The signaling pathways activated by β-glucosidase treatment are similar to those activated by an infestation by N. lugens, although the magnitude and timing of the signals elicited by the two treatments are different. This may explain why both treatments have similar volatile profiles and are equally attractive to the parasitoid Anagrus nilaparvatae Pang et Wang.  相似文献   

6.
The wound-inducible expression of proteinase inhibitors (PIs) genes in tomato provides a powerful model system to elucidate the signal transduction pathway of systemic defense response. An increasing body of evidence indicates that systemin and jasmonic acid (JA) work in the same signaling pathway to activate the expression of Pls and other defense-related genes. However, little is known about how systemin and JA interact to regulate cell to cell communication over long distances. Genetic analysis of the systemin/JA signaling pathway in tomato plants provides a unique opportunity to dissect the mechanism by which peptide and oxylipin signals interact to coordinate systemic expression of defense-related genes. Previously, it has been proposed that systemin is the long-distance mobile signal for systemic expression of defense related genes. However, recent genetic approach provided new evidence that jasmonic acid, rather than systemin, functions as the systemic wound signal, and that the peptide systemin works to regulate the biosynthesis of JA.  相似文献   

7.
以中国红豆杉悬浮细胞为植物细胞的模型,研究了低频脉冲电场对植物细胞生长和次生代谢的影响.不同生长时相的红豆杉细胞在不同时间的脉冲电场作用下,其生长和紫杉烷积累的情况表现出明显差异.对数前期的细胞经30 min的电场诱导后,细胞生长没有明显变化,但紫杉烷的含量提高了近30%.并发现, 脉冲电场和补糖的组合策略能更有效地促进细胞积累紫杉烷.  相似文献   

8.
活性氧与NO在SO2诱导蚕豆气孔运动中的作用   总被引:3,自引:0,他引:3  
以蚕豆叶表皮为材料,研究SO2胁迫时叶面气孔运动及其调节途径.研究发现,用浓度1~200μmol/L的SO2衍生物(亚硫酸钠与亚硫酸氢钠混合液)处理蚕豆叶下表皮后,气孔开度明显减小,气孔保卫细胞内活性氧(ROS)、一氧化氮(NO)和钙离子(Ca2+)水平显著升高.采用抗氧化剂抗坏血酸和过氧化氢酶,钙离子干扰剂EGTA和LaCl3,以及NO合成抑制剂NaN3与NO清除剂c-PTIO,分别与SO2衍生物同时作用时,SO2诱发的气孔关闭效应得到有效缓解,保卫细胞内ROS、NO和Ca2+水平随之改变.抗氧化剂和NO干扰剂能阻止SO2诱导的胞内ROS、NO和Ca2+水平升高;EGTA和LaCl3能降低SO2诱导的胞内NO和Ca2+升高,但不影响ROS水平.研究结果表明,较高浓度SO2能诱导气孔关闭,SO2胁迫诱导ROS和NO合成增加,ROS和NO通过钙信号系统调节气孔开度.  相似文献   

9.
植物激素脱落酸(Abscisic acid,ABA)在植物应对生物和非生物胁迫中起着重要作用.本研究利用以carks单基因突变体为亲本,构建双重突变体来检测CARKs在ABA信号途径中的功能.然后,分析多重突变体在ABA处理下,种子萌发率和子叶变绿的响应.结果显示:单基因突变体和双重变体与野生型相比,萌发率更高,双重突变体的子叶绿芽率高于单基因突变体.以上结果表明,CARKs家族基因在ABA信号途径中起正调控作用,而且它们的功能是冗余的.  相似文献   

10.
高等植物铁元素的吸收、转位和调控   总被引:1,自引:0,他引:1  
铁(Fe)是大多数生物体必需的微量营养元素.虽然铁在许多土壤中是丰富的,但铁在土壤中的可溶性非常低,常常限制植物生长.此外,铁自身存在高度的氧化还原特性,对细胞具有潜在的毒性.因此,细胞内铁的动态平衡需要严格调控.植物细胞中形成了一个复杂的信号网络来调节对铁的摄取、分配、运输及其代谢等过程.非禾本科和禾本科植物物种分别通过基于铁还原和铁螯合的两种不同策略从土壤中获得铁.植物对铁的吸收受到局部和全身信号的调控.系统信号通路似乎整合了激素信号、一氧化氮(NO)信号和植物营养需求等多种因素.综述了两种策略所依赖的分子机制和在铁缺乏条件下负责诱导这些策略的因素.  相似文献   

11.
植物由于不能移动而发展了复杂而精密的抗病系统.近年来,人们发现作为细胞膜组分的脂肪酸在植物的各种抗病机制中发挥着举足轻重的作用.脂肪酸及其衍生物不仅参与植物基础免疫和系统免疫,还参与经典抗病基因(R基因)介导的抗病过程.目前,已发现许多与脂肪酸(尤其是16碳和18碳脂肪酸及其衍生物)代谢相关的突变体,对这些突变体抗病性改变的分子机制研究成为植物抗病领域研究热点之一.本文综述了脂肪酸及其衍生物在植物防御信号转导中的最新研究进展,旨在为植物抗病遗传育种研究提供新的参考.  相似文献   

12.
气孔运动与植物水分代谢密切相关.保卫细胞可有效感知和整合多种环境信号,通过控制离子进出调节其膨压,影响气孔开与闭.诸多研究表明,蓝光信号诱导气孔开放和逆境信号脱落酸(ABA)促进气孔关闭构成了气孔运动的两大研究领域.该文就保卫细胞中蓝光信号传递及与ABA信号交叉控制气孔开闭的研究进展进行综述,以了解气孔对蓝光和ABA反应的最新进展,为发展耐旱与提高作物水分利用效率生物技术的改进提供理论支持.  相似文献   

13.
本文测定了刺玫果中的氨基酸组成及含量,并与同科植物进行了比较。实验表明,该果实中氨基酸组成齐全、含量高;E/E+N为对照样品的2—3倍。因此是一种很有价值的绿色植物。  相似文献   

14.
4-香豆酸:辅酶A连接酶(4CL)是植物苯丙烷衍生物,如类黄酮和木质素等,生物合成途径的一种关键酶,在大多数维管植物中4CL基因以基因家族的形式出现.4CL基因家族成员在植物组织中存在差异表达,并参与不同的苯丙烷类衍生物的生物合成.从4CL酶的基因结构、基因家族组成与表达特性等方面详细论述了当前最新研究进展,这将有助于更好地理解植物4CL基因参与苯丙烷类衍生物途径的合成与代谢机制.  相似文献   

15.
茉莉酸和水杨酸是植物防御反应中的重要分子,为研究茉莉酸和水杨酸在水稻防御反应中的作用,采用了色谱法测定了此两种激素在外源植物生长调节剂胁迫下的水平变化。我们采用的此方法简单,灵敏度高,再现性好,此两种激素含量变化可得到准确分离与测定。我们的结果表明在水稻中茉莉酸和水杨酸的作用可能不同与其它植物。首先,水杨酸含量变化较缓慢,其次,茉莉酸含量变化较明显。此结果表明水稻中茉莉酸和水杨酸的作用可能不同与烟草和拟南介,在信号传递过程中可能起到正面的调节作用。  相似文献   

16.
喜树碱是喜树(Camptotheca acuminata)的一种次生代谢物,有良好的抗肿瘤活性,在喜树体内的合成和积累受遗传和环境因子的影响。笔者在人工气候室中研究了温度对当年生喜树苗生长及叶片喜树碱合成的影响。试验设置了3种昼/夜(白天6:00至18:00,夜间18:00至次日6:00)温度处理,分别为30 ℃/25℃(T1)、35 ℃/30 ℃(T2)和40 ℃/35 ℃(T3)。结果表明:T3温度条件下,喜树有最高的生物量,T2处理有利于喜树苗高和地径的生长,而T3处理则有利于喜树根和茎的生物量积累。T2处理促进了喜树叶片内可溶性糖的积累,降低了可溶性蛋白质的含量,而T1和T3处理则提高了叶片色氨酸脱羧酶(TDC)的活性; T2处理下喜树碱含量和单株叶片喜树碱产量最高。试验期间喜树碱含量(产量)的变化趋势与TDC活性的变化不一致。综合认为,适宜的温度条件(T2)有利于喜树体内喜树碱的生物合成与积累,喜树碱在喜树体内的生物合成和积累是多种因素综合作用的结果。  相似文献   

17.
Nitric oxide (NO) and hydrogen peroxide (H2O2) have been shown to be important signaling molecules that participate in the regulation of several physiological processes. In particular, they have significant role in plant resistance to pathogens by contributing to induction defense genes. Here, whether NO and H2O2 participate in the resistance responses against Verticillium dahliae toxins (VD-toxins) and their effects on the expression of GSTgene are studied. The results reveal that NO and H2O2 are produced as part of a complex network of signals that respond to VD-toxins and may converge to function both synergistically and independently by inducing resistant responses. GSTgene is potentially involved in the resistance mechanism in the cotton suspension cells. NO induces the expression of GSTgene independently of H2O2. H2O2 may be a more potent signal in the resistance responses against VD-toxins.  相似文献   

18.
The biosynthesis of glycolipids in E. fasciculatus was studied by 14C label and chase. The fatty acids in sulphoquinovosyl diacylglycerol (SQDG) were almost 16-car- bon and 18-carbon ones. In addition to the two fatty acids, monogalactosyl diacylglycerol (MGDG) and digalactosyl diacylglycerol (DGDG) contained 8.5 mol% and 31.0 mol% of eicosapentaenoic acid (20∶5), respectively, and this fatty acid was usually distributed in the sn-1 position of the glycerol backbone. When plants were incubated with [2-14C] acetate, differences existed in the positional distribution of the labeled fatty acids in sn-1 and sn-2 among the three glycerolipids. In SQDG, 14C-labeled fatty acids were distributed uniformly in the sn-1 and sn-2 positions. In DGDG, 14C-labeled fatty acids were mainly distributed in the sn-2 position. In MGDG, the radioactivity of fatty acids in sn-1 position was far greater than that in sn-2 position after a 30 min pulse label, and the difference in radioactivity between the two positions decreased rapidly. The above results indicated that differences in the positional distribution of 14C-labeled fatty acids between sn-1 and sn-2 positions might be related to 20∶5 and the biosynthesis of DGDG. Our results also suggested that E. fasciculatus had the same DGDG biosynthetic pathway as that in higher plants and galactosyl transferase was selective for MGDG.  相似文献   

19.
The effects and the relationship between sali-cylic acid(SA)and nitric oxide(NO) on Vicia faba L.stomatal movement were studied.The results here showed that exogenous SA and NO induced stomatal closure,100μmol/L SA induced a rapid and striking NO increase in the cytosol of guard cells.This phenomenon was largely prevented by 2000μmol/L 2-phenyl-4,4,5,5-tetramethylimidazoline-l-oxyl-3-oxide(PTIO),a specific NO scavenger,and 25μmol/L N^G-nitro-L-Arg-methyl eater (L-NAME),an inhibitor of NO synthase(NOS) in mammalian cells that also inhibits plant NOS.In addition,SA-induced stomatal closure was largely prevented by PTIO and L-NAME.These results provide evidence that guard cells generate NO in response to SA via NOS-like activity,and that such NO production is required for full stomatal closure in response to SA.H-(1,2,4)-oxadiazole-[4,3-α]quinoxalin-l-one(ODQ),an inhibitor of guanylate cyclase,and nicotinamide,an antagonist of cADPR production,inhibited the effects of SA-and NO-induced stomatal closure.It suggests that both cGMP and cADPR might mediate the signal transduction of SA and NO-induced stomatal closure.  相似文献   

20.
The roles of signaling pathways in the production of trypsin proteinase inhibitors (TrypPIs) in rice infested by the leaf folder (LF) Cnaphalocrocis medinalis were studied. Infestation by LF increased TrypPI levels in the leaves of rice plants at the tillering, booting and flowering stages but decreased TrypPI levels at the ripening stage; TrypPI levels in rice stems did not increase at any developmental stage. Infestation by LF at the tillering stage systemically increased TrypPI levels in leaves but not in stems; it also enhanced salicylic acid (SA) levels in leaves and stems, and the ethylene level released from plants. However, LF infestation did not increase JA concentrations. Exogenous application of SA or ethylene enhanced TrypPI levels in the leaves and stems of plants at the tillering stage, whereas treatment with both SA and ethylene induced lower levels of TrypPIs than treatment with SA or ethylene alone, suggesting an antagonistic effect of SA and ethylene on TrypPIs induction. The results suggest that both SA and ethylene signaling pathways are involved in the production of TrypPIs in rice induced by LF; moreover, the antagonistic effect of SA and ethylene may explain the changes in TrypPI levels seen at different plant developmental stages and in different organs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号