首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Low-density lipoprotein and its effect on human blood platelets   总被引:19,自引:0,他引:19  
Events leading to hyperactivity of human blood platelets are accompanied by an enhanced risk of atherosclerosis and arterial thrombosis. Lipoprotein disorders affect platelet functions, and hypersensitive platelets are observed in various stages of hyperlipidemia. Low-density lipoprotein (LDL), a circulating complex of lipids and proteins that is increased in hypercholesterolemia, enhances platelet function and increases sensitivity of platelets to several naturally occurring agonists. LDL sensitizes platelets via binding of apoB-100 to a receptor on the platelet membrane and via transfer of lipids to the platelet membrane. The receptor that mediates binding of LDL to the platelet and initiates subsequent intracellular signaling cascades has not yet been identified. Modification of native LDL generates a platelet-activating particle, and this interaction might contribute to the development of the atherosclerotic plaque. Lysophosphatidic acid is formed upon mild oxidation of LDL and is responsible for subsequent platelet activation induced by the modified LDL particle. Thus, LDL changes the functions of platelets via a broad spectrum of interactions.  相似文献   

2.
The multiple biochemical and pharmacological similarities existing between blood platelets and 5-hydroxytryptamine (5-HT)-containing neurones of the CNS point to the platelets as a reliable model for the biochemical characterization of 5-HT releasers and uptake blockers which interfere with the storage and the active carrier mechanism of 5-HT in the neurones, respectively. In addition, the affinity displayed by dopamine and by dopaminergic neurotoxin MPP+ for the platelet 5-HT transport and storage indicates also some similarities between platelets and the dopaminergic system of the CNS. Since human platelets contain almost exclusively monoamine oxidase type B (MAO-B), they can be used as a source for the purification and characterization of this human enzyme. Human platelets thus offer an excellent peripheral model to indirectly assess the degree and duration of MAO-B inhibition occurring in the CNS. To date, knowledge of the many biochemical mechanisms underlying platelet physiology is still fragmentary. In fact, the functional role of binding sites located on the platelet cytoplasmic membrane, i.e. their coupling to a specific transmembrane signalling mechanism, is still in need of a precise biochemical and physiological characterization.  相似文献   

3.
Platelets as a model for neurones?   总被引:9,自引:0,他引:9  
The multiple biochemical and pharmacological similarities existing between blood platelets and 5-hydroxytryptamine (5-HT)-containing neurones of the CNS point to the platelets as a reliable model for the biochemical characterization of 5-HT releasers and uptake blockers which interfere with the storage and the active carrier mechanism of 5-HT in the neurones, respectively. In addition, the affinity displayed by dopamine and by dopaminergic neurotoxin MPP+ for the platelet 5-HT transport and storage indicates also some similarities between platelets and the dopaminergic system of the CNS. Since human platelets contain almost exclusively monoamine oxidase type B (MAO-B), they can be used as a source for the purification and characterization of this human enzyme. Human platelets thus offer an excellent peripheral model to indirectly assess the degree and duration of MAO-B inhibition occurring in the CNS. To date, knowledge of the many biochemical mechanisms underlying platelet physiology is still fragmentary. In fact, the functional role of binding sites located on the platelet cytoplasmic membrane, i.e. their coupling to a specific transmembrane signalling mechanism, is still in need of a precise biochemical and physiological characterization.  相似文献   

4.
Abnormalities of platelet functions have been linked to reelin-impaired neuronal disorders. However, little attention has been given to understanding the interplay between reelin and platelet. In this study, reelin was found to present in the human platelets and megakaryocyte-like leukemic cells. Reelin-binding assays revealed that extracellular reelin can interact with platelets through the receptor belonging to the low density lipoprotein receptor gene family. The reelin-to-platelet interactions enhance platelet spreading on fibrinogen concomitant with the augmentation of lamellipodia formation and F-actin bundling. In contrast, reelin has no effect on integrin αIIbβ3 activation and agonist-induced platelet aggregation. Molecular analysis revealed that the up-regulation of Rac1 activity and the inhibition of protein kinase C δ-Thr505 phosphorylation are important for reelin-mediated enhancement of platelet spreading on fibrinogen. These findings demonstrate for the first time that reelin is present in platelets and the reelin-to-platelet interactions play a novel role in platelet signaling and functions.  相似文献   

5.
Factor XIII subunit A as an intracellular transglutaminase   总被引:2,自引:0,他引:2  
Over the last 2 decades there has been increasing evidence that the role of factor XIII (FXIII) is not restricted to the area of hemostasis and that its subunit A functions as an intracellular enzyme in platelets and monocytes/macrophages. FXIII is already expressed during compartmentalisation of the precursors of megakaryocyte/platelet and monocyte/macrophage cell lines in the bone marrow. FXIII-A, produced by megakaryocytes, is packaged into budding platelets and is present in huge quantity in circulating ones. It seems very likely that it plays an important role in the cytoskeletal remodelling associated with the activation stages of platelets. FXIII-A can also be detected in blood monocytes and in all subsets of monocyte-derived macrophages throughout the body. FXIII-A is mainly localised in the cytoplasm, in association with cytoskeletal filaments, but at a relatively early stage of macrophage differentiation it also appears transiently in the nucleus. Cytoplasmic expression has a very close relationship with phagocytic activities. Further research is needed to understand the biological significance of its nuclear presentation.  相似文献   

6.
Selective serotonin reuptake inhibitors (SSRIs) are a heterogeneous group of new antidepressants that cause a well documented acquired but reversible serotonin deficiency in blood platelets. Platelets are small, anucleate cells and are the only blood cells specialized in storing peripheral serotonin. Platelets are also an integral part of the hemostatic process that is initiated during pathologic thrombus formation in cardiovascular diseases. Serotonin release from platelets is important for functional hemostasis as indicated by congenital diseases with serotonin-deficient platelets that can lead to life-threatening bleeding problems. The postulate that SSRIs should have an impact on cardiovascular diseases is therefore well founded. Cardiovascular effects of SSRIs have indeed been shown in a number of studies investigating the effect of SSRIs in patients with psychosomatic comorbidity. SSRIs reduce the incidence of recurrent myocardial infarction (MI) in patients suffering from post-MI depression. In addition, SSRIs inhibit tight clot formation of platelets in vitro, which points to a direct anti-thrombotic or pro-fibrinolytic effect of SSRIs.Received 16 June 2004; received after revision 9 September 2004; accepted 23 September 2004  相似文献   

7.
Hemostasis and pathological thrombus formation are dynamic processes that require multiple adhesive receptor-ligand interactions, with blood platelets at the heart of such events. Many studies have contributed to shed light on the importance of von Willebrand factor (VWF) interaction with its platelet receptors, glycoprotein (GP) Ib-IX-V and αIIbβ3 integrin, in promoting primary platelet adhesion and aggregation following vessel injury. This review will recapitulate our current knowledge on the subject from the rheological aspect to the spatio-temporal development of thrombus formation. We will also discuss the signaling events generated by VWF/GPIb-IX-V interaction, leading to platelet activation. Additionally, we will review the growing body of evidence gathered from the recent development of pathological mouse models suggesting that VWF binding to GPIb-IX-V is a promising target in arterial and venous pathological thrombosis. Finally, the pathological aspects of VWF and its impact on platelets will be addressed.  相似文献   

8.
Although platelets are best known as primary mediators of hemostasis, this function intimately associates them with inflammatory processes, and it has been increasingly recognized that platelets play an active role in both innate and adaptive immunity. For example, platelet adhesive interactions with leukocytes and endothelial cells via P-selectin can lead to several pro-inflammatory events, including leukocyte rolling and activation, production of cytokine cascades, and recruitment of the leukocytes to sites of tissue damage. Superimposed on this, platelets express immunologically-related molecules such as CD40L and Toll-like receptors that have been shown to functionally modulate innate immunity. Furthermore, platelets themselves can interact with microorganisms, and several viruses have been shown to cross-react immunologically with platelet antigens. This review discusses the central role that platelets play in inflammation, linking them with varied pathological conditions, such as atherosclerosis, sepsis, and immune thrombocytopenic purpura, and suggests that platelets also act as primary mediators of our innate defences.  相似文献   

9.
Thrombocytopenia is a frequent complication of viral infections providing evidence that interaction of platelets with viruses is an important pathophysiological phenomenon. Multiple mechanisms are involved depending on the nature of the viruses involved. These include immunological platelet destruction, inappropriate platelet activation and consumption, and impaired megakaryopoiesis. Viruses bind platelets through specific receptors and identified ligands, which lead to mutual alterations of both the platelet host and the viral aggressor. We have shown that HIV-1 viruses are internalized specifically in platelets and megakaryocytes, where they can be either sheltered, unaltered (with potential transfer of the viruses into target organs), or come in contact with platelet secretory products leading to virus destruction and facilitated platelet clearance. In this issue, we have reviewed the various pathways that platelets use in order to interact with viruses, HIV and others. This review also shows that more work is still needed to precisely identify platelet roles in viral infections, and to answer the challenge of viral safety in platelet transfusion.  相似文献   

10.
Malaria results in up to 2.5 million deaths annually, with young children and pregnant women at greatest risk. The great majority of severe disease is caused by Plasmodium falciparum. A characteristic feature of infection with P. falciparum is the accumulation or sequestration of parasite-infected red blood cells (RBCs) in various organs, such as the brain, lung and placenta, and together with other factors is important in the pathogenesis of severe forms of malaria. Sequestration results from adhesive interactions between parasite-derived proteins expressed on the surface of infected RBCs and a number of host molecules on the surface of endothelial cells, placental cells and uninfected RBCs. Some receptors for parasite adhesion have been implicated in particular malaria syndromes, such as intercellular adhesion molecule 1 in cerebral malaria and chondroitin sulfate A and hyaluronic acid in placental infection. The principal parasite ligand and antigen on the RBC surface, P. falciparum erythrocyte membrane protein 1 encoded by a multigene family termed var, is clonally variant, enabling evasion of specific immune responses. An understanding of these host-parasite interactions in the context of clinical disease and immunity may reveal potential targets to prevent or treat severe forms of malaria. Received 25 June 2001; received after revision 22 August 2001; accepted 24 August 2001  相似文献   

11.
The fibrin(ogen) receptor, integrin α(IIb)β(3), has a well-established role in platelet spreading, aggregation and clot retraction. How α(IIb)β(3) contributes to platelet-dependent coagulation is less well resolved. Here, we demonstrate that the potent suppressing effect of clinically used α(IIb)β(3) blockers on tissue factor-induced thrombin generation is linked to diminished platelet Ca(2+) responses and phosphatidylserine (PS) exposure. The same blockers suppress these responses in platelets stimulated with collagen and thrombin receptor agonists, whereas added fibrinogen potentiates these responses. In platelets spreading on fibrinogen, outside-in α(IIb)β(3) signaling similarly enhances thrombin-induced Ca(2+) rises and PS exposure. These responses are reduced in α(IIb)β(3)-deficient platelets from patients with Glanzmann's thrombasthenia. Furthermore, the contribution of α(IIb)β(3) to tissue factor-induced platelet Ca(2+) rises, PS exposure and thrombin generation in plasma are fully dependent on Syk kinase activity. Tyrosine phosphorylation analysis confirms a key role of Syk activation, which is largely but not exclusively dependent on α(IIb)β(3) activation. It is concluded that the majority of tissue factor-induced procoagulant activity of platelets relies on Syk activation and ensuing Ca(2+) signal generation, and furthermore that a considerable part of Syk activation relies on α(IIb)β(3) signaling. These results hence point to a novel role of Syk in integrin-dependent thrombin generation.  相似文献   

12.
13.
Many bacteria are capable of interacting with platelets and inducing platelet aggregation. This interaction may be a direct interaction between a bacterial surface protein and a platelet receptor or may be an indirect interaction where plasma proteins bind to the bacterial surface and subsequently bind to a platelet receptor. However, these interactions usually do not trigger platelet activation as a secondary co-signal is also required. This is usually due to specific antibody bound to the bacteria interacting with FcγRIIa on the platelet surface. Secreted bacterial products such as gingipains and lipopolysaccharide may also be capable of triggering platelet activation.  相似文献   

14.
Summary Purified elastase prepared by adsorption on synthetic zeolite in proper concentrations causes the coagulation of blood. Elastase was found to have no direct coagulative action on purified fibrinogen. Its coagulating action is due to the fact that it reacts with prothrombin to form thrombin. The reaction between prothrombin and elastase is independent of the presence of either platelets, thromboplastin or Ca-ions.  相似文献   

15.
The signal transducing system coupled to serotonin-S2 receptors   总被引:1,自引:0,他引:1  
The signal transducing system coupled to the serotonin-S2 receptor on platelets involves metabolism of inositol-containing phospholipid, elevation of intracellular free Ca2+ and activation of protein kinase C. Evidence for coupling of the serotonin-S2 receptor to the same signal transducing system in brain and smooth muscle tissue is reviewed.  相似文献   

16.
Guanylate cyclase in human platelets with different aggregability   总被引:1,自引:0,他引:1  
The activity of human platelet guanylate cyclase, and the activation of the enzyme by sodium nitroprusside were decreased in platelets with increased aggregability; these platelets were obtained from diabetes mellitus patients. Anomalies in guanylate cyclase activity and ADP-induced aggregation were more pronounced in platelets from subjects with type II than those with type I diabetes.  相似文献   

17.
Summary The activity of human platelet guanylate cyclase, and the activation of the enzyme by sodium nitroprusside were decreased in platelets with increased aggregability; these platelets were obtained from diabetes mellitus patients. Anomalies in guanylate cyclase activity and ADP-induced aggregation were more pronounced in platelets from subjects with type II than those with type I diabetes.  相似文献   

18.
Summary It is shown that the ability of blood platelets to aggregate in partially and completely sympathectomized rats is significantly lower than in intact animals. The blood clotting system of sympathectomized rats is hyperactive. The sympathectomy-provoked changes may be due to the increased content of adrenaline in the blood.  相似文献   

19.
Summary The adhesiveness and the ADP-induced aggregation of human blood platelets as well as the agglomeration and viscous metamorphosis initiated by thrombin was inhibited by papaverin. The release of biogenic amines and ATP from rabbit blood platelets induced by thrombin or other proteolytic enzymes was diminished. Also eupaverin and ethylpapaverin have an inhibitory effect on the platelet functions.  相似文献   

20.
Studies on the serotonin transporter in platelets   总被引:3,自引:0,他引:3  
S Z Langer  A M Galzin 《Experientia》1988,44(2):127-130
[3H]-Imipramine and [3H]-paroxetine label with high affinity a recognition site which is associated with the serotonergic transporter in blood platelets. The pharmacological profile of [3H]-imipramine and [3H]-paroxetine binding is highly correlated with the potency of drugs to inhibit the uptake of serotonin. Dissociation kinetic experiments suggest that the substrate recognition site for serotonin may be different from the modulatory site which is labeled with [3H]-imipramine or [3H]-paroxetine. The existence of an endocoid acting on the imipramine receptor to modulate the serotonin transporter has been proposed by several laboratories. In clinical studies most laboratories have reported a decrease in Bmax of [3H]-imipramine binding in platelets from depressed untreated patients when compared with matched healthy volunteers. The Bmax of [3H]-imipramine binding in platelets appears to be a state-dependent biological marker in depression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号