首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Maher BA  Dennis PF 《Nature》2001,411(6834):176-180
The low concentration of atmospheric CO2 inferred to have been present during glacial periods is thought to have been partly caused by an increased supply of iron-bearing dust to the ocean surface. This is supported by a recent model that attributes half of the CO2 reduction during past glacial stages to iron-stimulated uptake of CO2 by phytoplankton in the Southern Ocean. But atmospheric dust fluxes to the Southern Ocean, even in glacial periods, are thought to be relatively low and therefore it has been proposed that Southern Ocean productivity might be influenced by iron deposited elsewhere-for example, in the Northern Hemisphere-which is then transported south via ocean circulation (similar to the distal supply of iron to the equatorial Pacific Ocean). Here we examine the timing of dust fluxes to the North Atlantic Ocean, in relation to climate records from the Vostok ice core in Antarctica around the time of the penultimate deglaciation (about 130 kyr ago). Two main dust peaks occurred 155 kyr and 130 kyr ago, but neither was associated with the CO2 rise recorded in the Vostok ice core. This mismatch, together with the low dust flux supplied to the Southern Ocean, suggests that dust-mediated iron fertilization of the Southern Ocean did not significantly influence atmospheric CO2 at the termination of the penultimate glaciation.  相似文献   

2.
Oceanic Cd/P ratio and nutrient utilization in the glacial Southern Ocean   总被引:1,自引:0,他引:1  
Elderfield H  Rickaby RE 《Nature》2000,405(6784):305-310
During glacial periods, low atmospheric carbon dioxide concentration has been associated with increased oceanic carbon uptake, particularly in the southern oceans. The mechanism involved remains unclear. Because ocean productivity is strongly influenced by nutrient levels, palaeo-oceanographic proxies have been applied to investigate nutrient utilization in surface water across glacial transitions. Here we show that present-day cadmium and phosphorus concentrations in the global oceans can be explained by a chemical fractionation during particle formation, whereby uptake of cadmium occurs in preference to uptake of phosphorus. This allows the reconstruction of past surface water phosphate concentrations from the cadmium/calcium ratio of planktonic foraminifera. Results from the Last Glacial Maximum show similar phosphate utilization in the subantarctic to that of today, but much smaller utilization in the polar Southern Ocean, in a model that is consistent with the expansion of glacial sea ice and which can reconcile all proxy records of polar nutrient utilization. By restricting communication between the ocean and atmosphere, sea ice expansion also provides a mechanism for reduced CO2 release by the Southern Ocean and lower glacial atmospheric CO2.  相似文献   

3.
Dust has the potential to modify global climate by influencing the radiative balance of the atmosphere and by supplying iron and other essential limiting micronutrients to the ocean. Indeed, dust supply to the Southern Ocean increases during ice ages, and 'iron fertilization' of the subantarctic zone may have contributed up to 40?parts per million by volume (p.p.m.v.) of the decrease (80-100 p.p.m.v.) in atmospheric carbon dioxide observed during late Pleistocene glacial cycles. So far, however, the magnitude of Southern Ocean dust deposition in earlier times and its role in the development and evolution of Pleistocene glacial cycles have remained unclear. Here we report a high-resolution record of dust and iron supply to the Southern Ocean over the past four million years, derived from the analysis of marine sediments from ODP Site 1090, located in the Atlantic sector of the subantarctic zone. The close correspondence of our dust and iron deposition records with Antarctic ice core reconstructions of dust flux covering the past 800,000 years (refs 8, 9) indicates that both of these archives record large-scale deposition changes that should apply to most of the Southern Ocean, validating previous interpretations of the ice core data. The extension of the record beyond the interval covered by the Antarctic ice cores reveals that, in contrast to the relatively gradual intensification of glacial cycles over the past three million years, Southern Ocean dust and iron flux rose sharply at the Mid-Pleistocene climatic transition around 1.25 million years ago. This finding complements previous observations over late Pleistocene glacial cycles, providing new evidence of a tight connection between high dust input to the Southern Ocean and the emergence of the deep glaciations that characterize the past one million years of Earth history.  相似文献   

4.
The Southern Ocean biogeochemical divide   总被引:1,自引:0,他引:1  
Modelling studies have demonstrated that the nutrient and carbon cycles in the Southern Ocean play a central role in setting the air-sea balance of CO(2) and global biological production. Box model studies first pointed out that an increase in nutrient utilization in the high latitudes results in a strong decrease in the atmospheric carbon dioxide partial pressure (pCO2). This early research led to two important ideas: high latitude regions are more important in determining atmospheric pCO2 than low latitudes, despite their much smaller area, and nutrient utilization and atmospheric pCO2 are tightly linked. Subsequent general circulation model simulations show that the Southern Ocean is the most important high latitude region in controlling pre-industrial atmospheric CO(2) because it serves as a lid to a larger volume of the deep ocean. Other studies point out the crucial role of the Southern Ocean in the uptake and storage of anthropogenic carbon dioxide and in controlling global biological production. Here we probe the system to determine whether certain regions of the Southern Ocean are more critical than others for air-sea CO(2) balance and the biological export production, by increasing surface nutrient drawdown in an ocean general circulation model. We demonstrate that atmospheric CO(2) and global biological export production are controlled by different regions of the Southern Ocean. The air-sea balance of carbon dioxide is controlled mainly by the biological pump and circulation in the Antarctic deep-water formation region, whereas global export production is controlled mainly by the biological pump and circulation in the Subantarctic intermediate and mode water formation region. The existence of this biogeochemical divide separating the Antarctic from the Subantarctic suggests that it may be possible for climate change or human intervention to modify one of these without greatly altering the other.  相似文献   

5.
The availability of iron limits primary productivity and the associated uptake of carbon over large areas of the ocean. Iron thus plays an important role in the carbon cycle, and changes in its supply to the surface ocean may have had a significant effect on atmospheric carbon dioxide concentrations over glacial-interglacial cycles. To date, the role of iron in carbon cycling has largely been assessed using short-term iron-addition experiments. It is difficult, however, to reliably assess the magnitude of carbon export to the ocean interior using such methods, and the short observational periods preclude extrapolation of the results to longer timescales. Here we report observations of a phytoplankton bloom induced by natural iron fertilization--an approach that offers the opportunity to overcome some of the limitations of short-term experiments. We found that a large phytoplankton bloom over the Kerguelen plateau in the Southern Ocean was sustained by the supply of iron and major nutrients to surface waters from iron-rich deep water below. The efficiency of fertilization, defined as the ratio of the carbon export to the amount of iron supplied, was at least ten times higher than previous estimates from short-term blooms induced by iron-addition experiments. This result sheds new light on the effect of long-term fertilization by iron and macronutrients on carbon sequestration, suggesting that changes in iron supply from below--as invoked in some palaeoclimatic and future climate change scenarios--may have a more significant effect on atmospheric carbon dioxide concentrations than previously thought.  相似文献   

6.
Changes in iron supply to oceanic plankton are thought to have a significant effect on concentrations of atmospheric carbon dioxide by altering rates of carbon sequestration, a theory known as the 'iron hypothesis'. For this reason, it is important to understand the response of pelagic biota to increased iron supply. Here we report the results of a mesoscale iron fertilization experiment in the polar Southern Ocean, where the potential to sequester iron-elevated algal carbon is probably greatest. Increased iron supply led to elevated phytoplankton biomass and rates of photosynthesis in surface waters, causing a large drawdown of carbon dioxide and macronutrients, and elevated dimethyl sulphide levels after 13 days. This drawdown was mostly due to the proliferation of diatom stocks. But downward export of biogenic carbon was not increased. Moreover, satellite observations of this massive bloom 30 days later, suggest that a sufficient proportion of the added iron was retained in surface waters. Our findings demonstrate that iron supply controls phytoplankton growth and community composition during summer in these polar Southern Ocean waters, but the fate of algal carbon remains unknown and depends on the interplay between the processes controlling export, remineralisation and timescales of water mass subduction.  相似文献   

7.
The Southern Ocean is very important for the potential sequestration of carbon dioxide in the oceans and is expected to be vulnerable to changes in carbon export forced by anthropogenic climate warming. Annual phytoplankton blooms in seasonal ice zones are highly productive and are thought to contribute significantly to pCO2 drawdown in the Southern Ocean. Diatoms are assumed to be the most important phytoplankton class with respect to export production in the Southern Ocean; however, the colonial prymnesiophyte Phaeocystis antarctica regularly forms huge blooms in seasonal ice zones and coastal Antarctic waters. There is little evidence regarding the fate of carbon produced by P. antarctica in the Southern Ocean, although remineralization in the upper water column has been proposed to be the main pathway in polar waters. Here we present evidence for early and rapid carbon export from P. antarctica blooms to deep water and sediments in the Ross Sea. Carbon sequestration from P. antarctica blooms may influence the carbon cycle in the Southern Ocean, especially if projected climatic changes lead to an alteration in the structure of the phytoplankton community.  相似文献   

8.
To explain the lower atmospheric CO2 concentrations during glacial periods, it has been suggested that the productivity of marine phytoplankton was stimulated by an increased flux of iron-bearing dust to the oceans. One component of this theory is that iron-an essential element/nutrient for nitrogen-fixing organisms-will increase the rate of marine nitrogen fixation, fuelling the growth of other marine phytoplankton and increasing CO2 uptake. Here we present data that questions this hypothesis. From a sediment core off the northwestern continental margin of Mexico, we show that denitrification and phosphorite formation-processes that occur in oxygen-deficient upwelling regions, removing respectively nitrogen and phosphorus from the ocean-declined in glacial periods, thus increasing marine inventories of nitrogen and phosphorus. But increases in phosphorus were smaller and less rapid, leading to increased N/P ratios in the oceans. Acknowledging that phytoplankton require nitrogen and phosphorus in constant proportions, the Redfield ratio, and that N/P ratios greater than the Redfield ratio are likely to suppress nitrogen fixation, we suggest therefore that marine productivity did not increase in glacial periods in response to either increased nutrient inventories or greater iron supply.  相似文献   

9.
Atmospheric carbon dioxide concentrations were significantly lower during glacial periods than during intervening interglacial periods, but the mechanisms responsible for this difference remain uncertain. Many recent explanations call on greater carbon storage in a poorly ventilated deep ocean during glacial periods, but direct evidence regarding the ventilation and respired carbon content of the glacial deep ocean is sparse and often equivocal. Here we present sedimentary geochemical records from sites spanning the deep subarctic Pacific that--together with previously published results--show that a poorly ventilated water mass containing a high concentration of respired carbon dioxide occupied the North Pacific abyss during the Last Glacial Maximum. Despite an inferred increase in deep Southern Ocean ventilation during the first step of the deglaciation (18,000-15,000 years ago), we find no evidence for improved ventilation in the abyssal subarctic Pacific until a rapid transition approximately 14,600 years ago: this change was accompanied by an acceleration of export production from the surface waters above but only a small increase in atmospheric carbon dioxide concentration. We speculate that these changes were mechanistically linked to a roughly coeval increase in deep water formation in the North Atlantic, which flushed respired carbon dioxide from northern abyssal waters, but also increased the supply of nutrients to the upper ocean, leading to greater carbon dioxide sequestration at mid-depths and stalling the rise of atmospheric carbon dioxide concentrations. Our findings are qualitatively consistent with hypotheses invoking a deglacial flushing of respired carbon dioxide from an isolated, deep ocean reservoir, but suggest that the reservoir may have been released in stages, as vigorous deep water ventilation switched between North Atlantic and Southern Ocean source regions.  相似文献   

10.
Sea ice and dust flux increased greatly in the Southern Ocean during the last glacial period. Palaeorecords provide contradictory evidence about marine productivity in this region, but beyond one glacial cycle, data were sparse. Here we present continuous chemical proxy data spanning the last eight glacial cycles (740,000 years) from the Dome C Antarctic ice core. These data constrain winter sea-ice extent in the Indian Ocean, Southern Ocean biogenic productivity and Patagonian climatic conditions. We found that maximum sea-ice extent is closely tied to Antarctic temperature on multi-millennial timescales, but less so on shorter timescales. Biological dimethylsulphide emissions south of the polar front seem to have changed little with climate, suggesting that sulphur compounds were not active in climate regulation. We observe large glacial-interglacial contrasts in iron deposition, which we infer reflects strongly changing Patagonian conditions. During glacial terminations, changes in Patagonia apparently preceded sea-ice reduction, indicating that multiple mechanisms may be responsible for different phases of CO2 increase during glacial terminations. We observe no changes in internal climatic feedbacks that could have caused the change in amplitude of Antarctic temperature variations observed 440,000 years ago.  相似文献   

11.
Northern mid-latitude forests are a large terrestrial carbon sink. Ignoring nutrient limitations, large increases in carbon sequestration from carbon dioxide (CO2) fertilization are expected in these forests. Yet, forests are usually relegated to sites of moderate to poor fertility, where tree growth is often limited by nutrient supply, in particular nitrogen. Here we present evidence that estimates of increases in carbon sequestration of forests, which is expected to partially compensate for increasing CO2 in the atmosphere, are unduly optimistic. In two forest experiments on maturing pines exposed to elevated atmospheric CO2, the CO2-induced biomass carbon increment without added nutrients was undetectable at a nutritionally poor site, and the stimulation at a nutritionally moderate site was transient, stabilizing at a marginal gain after three years. However, a large synergistic gain from higher CO2 and nutrients was detected with nutrients added. This gain was even larger at the poor site (threefold higher than the expected additive effect) than at the moderate site (twofold higher). Thus, fertility can restrain the response of wood carbon sequestration to increased atmospheric CO2. Assessment of future carbon sequestration should consider the limitations imposed by soil fertility, as well as interactions with nitrogen deposition.  相似文献   

12.
A carbon isotope record of CO2 levels during the late Quaternary   总被引:8,自引:0,他引:8  
Jasper JP  Hayes JM 《Nature》1990,347(6292):462-464
Analyses of gases trapped in continental ice sheets have shown that the concentration of CO2 in the Earth's early atmosphere increased from 180 to 280 p.p.m. during the most recent glacial-interglacial transition. This change must have been driven by an increase in the concentration of CO2 dissolved in the mixed layer of the ocean. Biochemical and physiological factors associated with photosynthetic carbon fixation in this layer should lead to a relationship between concentrations of dissolved CO2 and the carbon isotopic composition of phytoplanktonic organic material, such that increased atmospheric CO2 should enhance the difference in 13C content between dissolved inorganic carbon and organic products of photosynthesis. Here we show that a signal related to atmospheric CO2 levels can be seen in the isotope record of a hemipelagic sediment core, which we can correlate with the CO2 record of the Vostok ice core. Calibration of the relationship between isotope fractionation and CO2 levels should permit the extrapolation of CO2 records to times earlier than those for which ice-core records are available.  相似文献   

13.
Keeling RF  Visbeck M 《Nature》2001,412(6847):605-606
One way of accounting for lowered atmospheric carbon dioxide concentrations during Pleistocene glacial periods is by invoking the Antarctic stratification hypothesis, which links the reduction in CO2 to greater stratification of ocean surface waters around Antarctica. As discussed by Sigman and Boyle, this hypothesis assumes that increased stratification in the Antarctic zone (Fig. 1) was associated with reduced upwelling of deep waters around Antarctica, thereby allowing CO2 outgassing to be suppressed by biological production while also allowing biological production to decline, which is consistent with Antarctic sediment records. We point out here, however, that the response of ocean eddies to increased Antarctic stratification can be expected to increase, rather than reduce, the upwelling rate of deep waters around Antarctica. The stratification hypothesis may have difficulty in accommodating eddy feedbacks on upwelling within the constraints imposed by reconstructions of winds and Antarctic-zone productivity in glacial periods.  相似文献   

14.
Schlesinger WH  Lichter J 《Nature》2001,411(6836):466-469
The current rise in atmospheric CO2 concentration is thought to be mitigated in part by carbon sequestration within forest ecosystems, where carbon can be stored in vegetation or soils. The storage of carbon in soils is determined by the fraction that is sequestered in persistent organic materials, such as humus. In experimental forest plots of loblolly pine (Pinus taeda) exposed to high CO2 concentrations, nearly half of the carbon uptake is allocated to short-lived tissues, largely foliage. These tissues fall to the ground and decompose, normally contributing only a small portion of their carbon content to refractory soil humic materials. Such findings call into question the role of soils as long-term carbon sinks, and show the need for a better understanding of carbon cycling in forest soils. Here we report a significant accumulation of carbon in the litter layer of experimental forest plots after three years of growth at increased CO2 concentrations (565 microl l(-1)). But fast turnover times of organic carbon in the litter layer (of about three years) appear to constrain the potential size of this carbon sink. Given the observation that carbon accumulation in the deeper mineral soil layers was absent, we suggest that significant, long-term net carbon sequestration in forest soils is unlikely.  相似文献   

15.
The influence of Antarctic sea ice on glacial-interglacial CO2 variations   总被引:1,自引:0,他引:1  
Stephens BB  Keeling RF 《Nature》2000,404(6774):171-174
Ice-core measurements indicate that atmospheric CO2 concentrations during glacial periods were consistently about 80 parts per million lower than during interglacial periods. Previous explanations for this observation have typically had difficulty accounting for either the estimated glacial O2 concentrations in the deep sea, 13C/12C ratios in Antarctic surface waters, or the depth of calcite saturation; also lacking is an explanation for the strong link between atmospheric CO2 and Antarctic air temperature. There is growing evidence that the amount of deep water upwelling at low latitudes is significantly overestimated in most ocean general circulation models and simpler box models previously used to investigate this problem. Here we use a box model with deep-water upwelling confined to south of 55 degrees S to investigate the glacial-interglacial linkages between Antarctic air temperature and atmospheric CO2 variations. We suggest that low glacial atmospheric CO2 levels might result from reduced deep-water ventilation associated with either year-round Antarctic sea-ice coverage, or wintertime coverage combined with ice-induced stratification during the summer. The model presented here reproduces 67 parts per million of the observed glacial-interglacial CO2 difference, as a result of reduced air-sea gas exchange in the Antarctic region, and is generally consistent with the additional observational constraints.  相似文献   

16.
Riebesell U  Zondervan I  Rost B  Tortell PD  Zeebe RE  Morel FM 《Nature》2000,407(6802):364-367
The formation of calcareous skeletons by marine planktonic organisms and their subsequent sinking to depth generates a continuous rain of calcium carbonate to the deep ocean and underlying sediments. This is important in regulating marine carbon cycling and ocean-atmosphere CO2 exchange. The present rise in atmospheric CO2 levels causes significant changes in surface ocean pH and carbonate chemistry. Such changes have been shown to slow down calcification in corals and coralline macroalgae, but the majority of marine calcification occurs in planktonic organisms. Here we report reduced calcite production at increased CO2 concentrations in monospecific cultures of two dominant marine calcifying phytoplankton species, the coccolithophorids Emiliania huxleyi and Gephyrocapsa oceanica. This was accompanied by an increased proportion of malformed coccoliths and incomplete coccospheres. Diminished calcification led to a reduction in the ratio of calcite precipitation to organic matter production. Similar results were obtained in incubations of natural plankton assemblages from the north Pacific ocean when exposed to experimentally elevated CO2 levels. We suggest that the progressive increase in atmospheric CO2 concentrations may therefore slow down the production of calcium carbonate in the surface ocean. As the process of calcification releases CO2 to the atmosphere, the response observed here could potentially act as a negative feedback on atmospheric CO2 levels.  相似文献   

17.
DeConto RM  Pollard D 《Nature》2003,421(6920):245-249
The sudden, widespread glaciation of Antarctica and the associated shift towards colder temperatures at the Eocene/Oligocene boundary (approximately 34 million years ago) (refs 1-4) is one of the most fundamental reorganizations of global climate known in the geologic record. The glaciation of Antarctica has hitherto been thought to result from the tectonic opening of Southern Ocean gateways, which enabled the formation of the Antarctic Circumpolar Current and the subsequent thermal isolation of the Antarctic continent. Here we simulate the glacial inception and early growth of the East Antarctic Ice Sheet using a general circulation model with coupled components for atmosphere, ocean, ice sheet and sediment, and which incorporates palaeogeography, greenhouse gas, changing orbital parameters, and varying ocean heat transport. In our model, declining Cenozoic CO2 first leads to the formation of small, highly dynamic ice caps on high Antarctic plateaux. At a later time, a CO2 threshold is crossed, initiating ice-sheet height/mass-balance feedbacks that cause the ice caps to expand rapidly with large orbital variations, eventually coalescing into a continental-scale East Antarctic Ice Sheet. According to our simulation the opening of Southern Ocean gateways plays a secondary role in this transition, relative to CO2 concentration.  相似文献   

18.
Anderson DM  Archer D 《Nature》2002,416(6876):70-73
The pH of the ocean is controlled by the chemistry of calcium carbonate. This system in turn plays a large role in regulating the CO2 concentration of the atmosphere on timescales of thousands of years and longer. Reconstructions of ocean pH and carbonate-ion concentration are therefore needed to understand the ocean's role in the global carbon cycle. During the Last Glacial Maximum (LGM), the pH of the whole ocean is thought to have been significantly more basic, as inferred from the isotopic composition of boron incorporated into calcium carbonate shells, which would partially explain the lower atmospheric CO2 concentration at that time. Here we reconstruct carbonate-ion concentration--and hence pH--of the glacial oceans, using the extent of calcium carbonate dissolution observed in foraminifer faunal assemblages as compiled in the extensive global CLIMAP data set. We observe decreased carbonate-ion concentrations in the glacial Atlantic Ocean, by roughly 20 micromolkg-1, while little change occurred in the Indian and Pacific oceans relative to today. In the Pacific Ocean, a small (5 micromolkg-1) increase occurred below 3,000m. This rearrangement of ocean pH may be due to changing ocean circulation from glacial to present times, but overall we see no evidence for a shift in the whole-ocean pH as previously inferred from boron isotopes.  相似文献   

19.
Bates NR  Pequignet AC  Johnson RJ  Gruber N 《Nature》2002,420(6915):489-493
Large-scale features of ocean circulation, such as deep water formation in the northern North Atlantic Ocean, are known to regulate the long-term physical uptake of CO2 from the atmosphere by moving CO2-laden surface waters into the deep ocean. But the importance of CO2 uptake into water masses that ventilate shallower ocean depths, such as subtropical mode waters of the subtropical gyres, are poorly quantified. Here we report that, between 1988 and 2001, dissolved CO2 concentrations in subtropical mode waters of the North Atlantic have increased at a rate twice that expected from these waters keeping in equilibrium with increasing atmospheric CO2. This accounts for an extra 0.4-2.8 Pg C (1 Pg = 10(15) g) over this period (that is, about 0.03-0.24 Pg C yr(-1)), equivalent to 3-10% of the current net annual ocean uptake of CO2 (ref. 3). We suggest that the lack of strong winter mixing events, to greater than 300 m in depth, in recent decades is responsible for this accumulation, which would otherwise disturb the mode water layer and liberate accumulated CO2 back to the atmosphere. However, future climate variability (which influences subtropical mode water formation) and changes in the North Atlantic Oscillation (leading to a return of deep winter mixing events) may reduce CO2 accumulation in subtropical mode waters. We therefore conclude that, although CO2 uptake by subtropical mode waters in the North Atlantic--and possibly elsewhere--does not always represent a long-term CO2 sink, the phenomenon is likely to contribute substantially to interannual variability in oceanic CO2 uptake.  相似文献   

20.
Stability of atmospheric CO2 levels across the Triassic/Jurassic boundary   总被引:1,自引:0,他引:1  
Tanner LH  Hubert JF  Coffey BP  McInerney DP 《Nature》2001,411(6838):675-677
The Triassic/Jurassic boundary, 208 million years ago, is associated with widespread extinctions in both the marine and terrestrial biota. The cause of these extinctions has been widely attributed to the eruption of flood basalts of the Central Atlantic Magmatic Province. This volcanic event is thought to have released significant amounts of CO2 into the atmosphere, which could have led to catastrophic greenhouse warming, but the evidence for CO2-induced extinction remains equivocal. Here we present the carbon isotope compositions of pedogenic calcite from palaeosol formations, spanning a 20-Myr period across the Triassic/Jurassic boundary. Using a standard diffusion model, we interpret these isotopic data to represent a rise in atmospheric CO2 concentrations of about 250 p.p.m. across the boundary, as compared with previous estimates of a 2,000-4,000 p.p.m. increase. The relative stability of atmospheric CO2 across this boundary suggests that environmental degradation and extinctions during the Early Jurassic were not caused by volcanic outgassing of CO2. Other volcanic effects-such as the release of atmospheric aerosols or tectonically driven sea-level change-may have been responsible for this event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号