首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cellular response and detoxification mechanisms in porcine endothelial cells (PAECs) to arsenic trioxide (As2O3), sodium arsenite (NaAsO2) and sodium arsenate (Na2HAsO4) were investigated. NaAsO2 at 20 microM for 72 h increased Cu/Zn superoxide dismutase activity resulting in elevated intracellular hydrogen peroxide levels, but As2O3 and Na2HAsO4 did not. Trivalent arsenic compounds increased intracellular oxidized glutathione (GSSG) and total glutathione (GSH) and cellular glutathione peroxidase (cGPX) and glutathione S-transferase (GST) activity, but not glutathione reductase activity. The increased cGPX activity resulted in an elevated cellular GSSG content. Na2HAsO4 increased the cellular GSSG level at 72 h compared to controls. These results imply that the increased GSH content responding to the oxidative stress by trivalent arsenic compounds may be mainly related to the regulation of GSH turnover. The increased GST activity implies that the elevated intracellular GSH level responding to the oxidative stress may be used to conjugate arsenic in PAECs and facilitate arsenic efflux.  相似文献   

2.
10 mM isatin (2,3-dioxoindole) inhibited glucose influx into human erythrocytes by over 30%. The inhibition is of the competitive type, where the affinity constant (Kt) was increased from 5.71 (control) to 11.11 mM in the presence of isatin with no change in Vmax (130 nmol/min/ml packed cells). The observed inhibition of sugar transport by isatin was not mediated through membrane–SH groups accessible to iodoacetate, iodoacetamide, DTNB, DNP or sodium arsenite. Isatin inhibited sugar transport in the presence of 2 mM harmaline, an alkaloid inhibitor of Na+, K+–ATPase activity. The inhibition was non additive which suggests that these two compounds interact with the same or a similar site on the erythrocyte membrane.  相似文献   

3.
Plants contain a large number of aquaporins with different selectivity. These channels generally conduct water, but some additionally conduct NH3, CO2 and/or H2O2. The experimental evidence and molecular basis for the transport of a given solute, the validation with molecular dynamics simulations and the physiological impact of the selectivity are reviewed here. The aromatic/arginine (ar/R) constriction is most important for solute selection, but the exact pore requirements for efficient conduction of small solutes remain difficult to predict. Yeast growth assays are valuable for screening substrate selectivity and are explicitly shown for hydrogen peroxide and methylamine, a transport analog of ammonia. Independent assays need to address the relevance of different substrates for each channel in its physiological context. This is emphasized by the fact that several plant NIP channels, which conduct several solutes, are specifically involved in the transport of metalloids, such as silicic acid, arsenite, or boric acid in planta.  相似文献   

4.
The cytotoxicity of arsenic compounds towards BALB/c 3T3 cells in culture was investigated, together with the role of glutathione (GSH) in the induction of the cytotoxic effects. The rank order of cytotoxicity was as follows: arsenite (As3+)>arsenate (As5+)>dimethylarsinic acid (DMAA)>methylarsonic acid (MAA)>trimethylarsine oxide (TMAO). Arsenobetaine, arsenocholine and the tetramethylarsonium ion were less toxic. Depletion of GSH enhanced the cytotoxic effects of As3+, As5+, MAA and TMAO, while the cytotoxicity of DMAA was markedly reduced by depletion of GSH. These results suggest that GSH plays a role in protecting the cells against the toxic effects of As3+, As5+, MAA and TMAO while it is involved in the induction of the cytotoxic effects of DMAA.  相似文献   

5.
Spinach leaf mitochondria (C3 plant) were capable of oxidizing Glycine. This oxidation was linked to the mitochondrial electron transport chain, was coupled to three phosphorylation sites and was sensitive to electron transport inhibitors. In marked contrast however, neither mitochondria from dark grown plants nor mitochondria from C4 leaf plants were capable of oxidizing this amino acid.  相似文献   

6.
Plants often encounter unfavorable environmental conditions because of their sessile lifestyle. These adverse factors greatly affect the geographic distribution of plants, as well as their growth and productivity. Drought stress is one of the premier limitations to global agricultural production due to the complexity of the water-limiting environment and changing climate. Plants have evolved a series of mechanisms at the morphological, physiological, biochemical, cellular, and molecular levels to overcome water deficit or drought stress conditions. The drought resistance of plants can be divided into four basic types-drought avoidance, drought tolerance, drought escape, and drought recovery. Various drought-related traits, including root traits, leaf traits, osmotic adjustment capabilities, water potential, ABA content, and stability of the cell membrane, have been used as indicators to evaluate the drought resistance of plants. In the last decade, scientists have investigated the genetic and molecular mechanisms of drought resistance to enhance the drought resistance of various crops, and significant progress has been made with regard to drought avoidance and drought tolerance. With increasing knowledge to comprehensively decipher the complicated mechanisms of drought resistance in model plants, it still remains an enormous challenge to develop water-saving and drought-resistant crops to cope with the water shortage and increasing demand for food production in the future.  相似文献   

7.
It is ten years since arsenobetaine was first isolated from the western rock lobster Palinurus cygnus. Subsequently this naturally-occurring arsenical has been found in many species of marine animals contributing to the human diet. The identification of arsenic-containing ribofuranosides in algae and the production of dimethylarsinoylethanol from their anaerobic decomposition has allowed speculation on arsenic metabolism in marine organisms and has suggested a possible route to arsenobetaine from oceanic arsenate.  相似文献   

8.
Summary It is ten years since arsenobetaine was first isolated from the western rock lobsterPalinurus cygnus. Subsequently this naturally-occurring arsenical has been found in many species of marine animals contributing to the human diet. The identification of arsenic-containing ribofuranosides in algae and the production of dimethylarsinoylethanol from their anaerobic decomposition has allowed speculation on arsenic metabolism in marine organisms and has suggested a possible route to arsenobetaine from oceanic arsenate.  相似文献   

9.
10.
Chloroplasts are endosymbiotic organelles and play crucial roles in energy supply and metabolism of eukaryotic photosynthetic organisms (algae and land plants). They harbor channels and transporters in the envelope and thylakoid membranes, mediating the exchange of ions and metabolites with the cytosol and the chloroplast stroma and between the different chloroplast subcompartments. In secondarily evolved algae, three or four envelope membranes surround the chloroplast, making more complex the exchange of ions and metabolites. Despite the importance of transport proteins for the optimal functioning of the chloroplast in algae, and that many land plant homologues have been predicted, experimental evidence and molecular characterization are missing in most cases. Here, we provide an overview of the current knowledge about ion and metabolite transport in the chloroplast from algae. The main aspects reviewed are localization and activity of the transport proteins from algae and/or of homologues from other organisms including land plants. Most chloroplast transporters were identified in the green alga Chlamydomonas reinhardtii, reside in the envelope and participate in carbon acquisition and metabolism. Only a few identified algal transporters are located in the thylakoid membrane and play role in ion transport. The presence of genes for putative transporters in green algae, red algae, diatoms, glaucophytes and cryptophytes is discussed, and roles in the chloroplast are suggested. A deep knowledge in this field is required because algae represent a potential source of biomass and valuable metabolites for industry, medicine and agriculture.  相似文献   

11.
Microtubule transport defects in neurological and ciliary disease   总被引:1,自引:0,他引:1  
Microtubules are primarily responsible for facilitating long-distance transport of both proteins and organelles. Given the critical role of this process in cellular function, it is not surprising that perturbation of microtubule-based transport can lead to diverse phenotypes in humans, including cancer and neurodegenerative disorders such as Alzheimer or Huntington disease. Recent investigations have also indicated that defects in specialized microtubule-based transport systems, such as mutations affecting the transport of protein particles along the length of cilia (intraflagellar transport) can cause retinal dystrophy, polycystic kidney disease or more complex syndromic phenotypes, such as Bardet-Biedl syndrome. In this review, we discuss recent findings implicating defects in microtubule-associated transport and motor proteins in a variety of diseases, particularly the role of defective microtubular transport in neurological and ciliary disease. These defects frequently display phenotypic consequences that manifest as human disease yet do not cause organismal lethality.Received 7 Janury 2005; received after revision 23 February 2005; accepted 21 March 2005  相似文献   

12.
Interactions of plant cells with pathogens or other biotic or abiotic environmental factors can give rise to systemic defense responses that rely upon the cell-to-cell and systemic transport of specific signals. A novel type of systemic signaling was revealed by recent evidence indicating the existence of RNA species that travel cell to cell and through the vasculature. The most compelling evidence for intercellular and systemic transport of RNA in plants is provided by viroids and viruses that apparently use the endogenous transport machinery to spread infection. The cell to cell movement of plant viruses occurs through small pores in the cell wall known as plasmodesmata and depends on virus-encoded 'movement proteins'. This review summarizes current knowledge of Tobacco mosaic virus infection with emphasis on the mechanism by which this virus targets its RNA genome from sites of replication to plasmodesmata to achieve intercellular spread.  相似文献   

13.
Novel insecticidal toxins from nematode-symbiotic bacteria   总被引:6,自引:0,他引:6  
The current strategy of using transgenic crops expressing insecticidal protein toxins is placing increasing emphasis on the discovery of novel toxins, beyond those already derived from the bacterium Bacillus thuringiensis. Here we review the cloning of four insecticidal toxin complex (tc) encoding genes from a different bacterium Photorhabdus luminescens and of similar gene sequences from Xenorhabdus nematophilus. Both these bacteria occupy the gut of entomopathogenic nematodes and are released into the insect upon invasion by the nematode. In the insect the bacteria presumably secrete these insecticidal toxins, as well as a range of other antimicrobials, to establish the insect cadaver as a monocultural breeding ground for both bacteria and nematodes. In this review, the protein biochemistry and structure of the tc encoding loci are discussed in relation to their observed toxicity and histopathology. These toxins may prove useful as alternatives to those derived from B. thuringiensis for deployment in insect-resistant transgenic plants.  相似文献   

14.
Axonal transport of neurofilaments in normal and disease states   总被引:5,自引:0,他引:5  
Neurofilaments are among the most abundant organelles in neurones. They are synthesised in cell bodies and then transported into and through axons by a process termed 'slow axonal transport' at a rate that is distinct from that driven by conventional fast motors. Several recent studies have now demonstrated that this slow rate of transport is actually the consequence of conventional fast rates of movement that are interrupted by extended pausing. At any one time, most neurofilaments are thus stationary. Accumulations of neurofilaments are a pathological feature of several human neurodegenerative diseases suggesting that neurofilament transport is disrupted in disease states. Here, we review recent advances in our understanding of neurofilament transport in both normal and disease states. Increasing evidence suggests that phosphorylation of neurofilaments is a mechanism for regulating their transport properties, possibly by promoting their detachment from the motor(s). In some neurodegenerative diseases, signal transduction mechanisms involving neurofilament kinases and phosphatases may be perturbed leading to disruption of transport. Received 11 July 2001; received after revision 30 August 2001; accepted 31 August 2001  相似文献   

15.
The adaptive significance of sexuality   总被引:2,自引:0,他引:2  
H J Bremermann 《Experientia》1985,41(10):1245-1254
A theory of sexuality and polymorphism is proposed in which diversity at the molecular level is the adaptive response of multicellular organisms to the challenge of microparasites that have smaller genomes, shorter generation times and which can evolve more quickly than their hosts. The theory has implications for genetically homogenized crops and other cultivated plants as well as for immunology. A different function of sexuality is proposed for microorganisms that reproduce both asexually and sexually. Several possible experimental tests are discussed. Mathematical modelling techniques are outlined qualitatively and compared with game-theoretical methods which may be interpreted as simplifications of population dynamics of polymorphic host-parasite populations are referenced.  相似文献   

16.
Summary Assimilation pathways of mineral nitrogen and ion balances of the two partners of ectomycorrhizal symbiosis (fungi and woody plants) are reviewed. Data are presented about the partners both in pure culture and in mycorrhizal association. The two forms of mineral nitrogen, ammonium and nitrate, differ in their mobility in the soil, their transport into the cells, their uptake rates by plants and their assimilation pathways. These metabolic differences are related to differences in adjustment of ion balances and carbon metabolism under conditions of nitrate or ammonium nutrition. The data obtained on the partners of ectomycorrhizal symbiosis are discussed from this point of view and the observations composed with those on herbaceous angiosperms.  相似文献   

17.
Summary Tryptophanhydroxylase has been demonstrated in the human pineal gland. The enzyme activity was 3–6 times greater than that of homogenates from cortical areas of human brain. The presence of tryptophan hydroxylase in the pineal gland implies that this organ is not dependent on the transport of 5-hydroxytryptophan but is able to synthesize this precursor of melatonin.This work was supported by grants from the Medical Faculty, University of Lund and the Swedish Cancer Society.  相似文献   

18.
Summary Young plants ofCoffea arabica were fed 200 µC C14O2 each, the carbon dioxide being absorbed by photosynthesis. The specific activity of the alkaloid trigonelline contained in the leaves was shown to be strongly dependent of leaf age. Excised plants without root system or plants with an interrupted shoot-root connection as regards pholem transport (by girdling the stem below the cotyledons) incorporate more radioactive carbon into the molecule of trigonelline than intact plants.  相似文献   

19.
Summary A theory of sexuality and polymorphism is proposed in which diversity at the molecular level is the adaptive response of multicellular organisms to the challenge of microparasites that have smaller genomes, shorter generation times and which can evolve more quickly than their hosts. The theory has implications for genetically homogenized crops and other cultivated plants as well as for immunology. A different function of sexuality is proposed for microorganisms that reproduce both asexually and sexually. Several possible experimental tests are discussed. Mathematical modelling techniques are outlined qualitatively and compared with game-theoretical methods which may be interpreted as simplifications of population dynamic and genetic equilibria. Some results about equilibria, stability and extinction in the population dynamics of polymorphic host-parasite populations are referenced.  相似文献   

20.
Glycoconjugates in the mammalian reproductive tract are critical components of the molecular mechanisms that control sperm maturation, sperm transport and gamete interactions. In the oviduct of many species, sperm transport and maturation are regulated by protein-carbohydrate interactions that form a sperm reservoir. Subsequently, gamete interactions are mediated by the binding of lectin-like sperm proteins with carbohydrate moieties on the zona pellucida. The sperm glycocalyx is extensively modified during sperm transport and maturation. Multiple functions have been proposed for this dense carbohydrate layer overlying the sperm plasmalemma, and sperm-surface carbohydrates have been implicated in immune-mediated human infertility. The structure and function of glycoconjugates in the oviductal sperm reservoir, the zona pellucida, and on the sperm surface are reviewed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号