首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
高压水射流切割是一项正在发展中的新技术,由于它具有许多其它切割技术所不能比拟的优点,因此日益受到人们的注意和重视。本文介绍了高压水射流切割的装置和对非金属板材切割试验的情况,得到了射流压力、喷嘴口径、靶距、进给速度与切割深度之间的关系,探讨了高分子聚合物对射流性能的影响。此外,还介绍了对板材进行复杂形状的切割等。  相似文献   

2.
高压水射流切槽煤层卸压机理   总被引:4,自引:0,他引:4  
针对开采保护层不能实现本层煤解放的问题,将高压水射流切割技术应用于煤层卸压.通过应用边界理论研究高压水射流切割煤体的过程,揭示了高压水射流切槽煤层冲击地压解危机理.由于射流随喷头后退式移动,因而射流足紧贴着割开的煤层的壁面而流动,将受到固壁摩擦阻力的作用,在切槽中形成三面附壁射流.应用量级比较法和量纲和谐原理计算了射流最大流速,应用应力波在煤体中的传播理论计算了最大切割深度,并对煤体切槽后的卸压范围进行了估算.结果表明,将高压水射流切割技术用于煤层卸压,不仅能够实现本层煤的卸压而且可能克服地质条件等诸多因素的限制,煤体切槽后卸压范围可达到5 m,卸压效果较好.该方法用于煤层卸压有发展前景.  相似文献   

3.
近日 ,山东省科技厅发文 ,同意在我校建立山东省高压水射流新技术研究推广中心。其主要任务是加强与国内外的科技合作 ,积极开展超高压水射流切割清洗新技术、除垢新技术、切割成形加工及应用、破碎参数优化等技术的研究与推广。至此 ,我校在建省部级重点实验室 (工程研究中心 )已达到 2 0个山东省高压水射流新技术研究推广中心被批准在石油大学建设@焦念友  相似文献   

4.
近日 ,山东省科技厅发文 ,同意在我校建立山东省高压水射流新技术研究推广中心。其主要任务是加强与国内外的科技合作 ,积极开展超高压水射流切割清洗新技术、除垢新技术、切割成形加工及应用、破碎参数优化等技术的研究与推广。至此 ,我校在建省部级重点实验室 (工程研究中心 )已达到 2 0个。山东省高压水射流新技术研究推广中心被批准在石油大学建设@焦念友  相似文献   

5.
为了研究高压水射流切割煤矿锚杆的问题,利用自行搭建前混式高压磨料水射流切割系统对煤矿用的锚杆进行切割试验,通过对射流压力、磨料参数、横移速度和喷射靶距等参数对切割能力影响的探讨,得出射流压力与切割深度可以简化为线性关系,喷嘴横移速度与切割深度可以简化为反比关系,以及磨料参数和靶距存在最优值等结论,同时获取了切割所需的最佳工艺参数。  相似文献   

6.
脉冲高压水射流工作原理及研究现状   总被引:6,自引:0,他引:6  
综述了脉冲高压水射流技术的发展过程,指出脉冲水射流是一种有发展前途的新型射流技术。通过对脉冲高压水射流工作原理的分析,显示了脉冲射流切割和破碎材料的潜在优势,详细探讨了振荡脉冲射流、脉冲水炮和电液动脉冲射流的发生机理和脉冲特性,并简要介绍了几种其他型式的脉冲射流。  相似文献   

7.
本文根据高压水连续细射流穿透固体的理论,结合水射流在空气中发散、速度衰减的经验公式,推导出了水射流切割方程,求解出了满足于实际应用中的限制条件的最大切槽深度及其对应的最佳靶距,为高压水连续细射流切割板材的实际应用作了一些必要的准备。  相似文献   

8.
为了解决常用切割技术不适宜在水下作业的难题,从工程应用出发,运用数学建模分析、软件模拟仿真等方法,对前混合磨料水射流系统的水下切割技术进行了相关研究和仿真.研究表明,在预设加紧力200N的条件下,设计的装置可以搭载喷枪进行水射流水下排爆作业,水射流过程具有高能、冷态、点割、非接触等特点,可以对各种材料进行任意切割,尤其...  相似文献   

9.
基于水射流独特的切割优势提出了高压水射流螺旋式切槽辅助松动爆破的新方法,实验研究了高压水射流切割煤岩体所形成缝槽的断口形貌并建立了其几何模型.在此基础上,基于断裂力学理论同时结合Westergaard方法,确定了复变函数,进而推导出爆生气体准静态作用下射流螺旋切槽孔的应力场公式,得到了射流螺旋切槽孔缝槽尖端应力强度因子计算公式,并分析了高压水射流切槽辅助松动爆破松动效应.最后,采用ANSYS/LS-DYNA数值模拟软件对该模型进行了验证,结果符合较好.  相似文献   

10.
高压水射流深穿透射孔增产机理研究   总被引:24,自引:1,他引:23  
高压水射流技术是切割破岩、清洗除锈、油田增产的新技术。在分析钻井侵入带和常规聚能射孔压实带对油井产量影响的基础上,探讨了高压水射流定向深穿透射孔的油井增产机理。研究结果表明,采用高压高速射流技术,可以切割破岩、减轻近井地带应力集中和穿透近井污染带,其结果可以使油井获得增产增注。讨论了该技术用于定向射孔压裂进行油藏改造的可行性。  相似文献   

11.
高压水射流深穿透射孔增产机理研究   总被引:2,自引:0,他引:2  
高压水射流技术是切割破岩、清洗除锈、油田增产的新技术。在分析钻井侵入带和常规聚能射孔压实带对油井产量影响的基础上 ,探讨了高压水射流定向深穿透射孔的油井增产机理。研究结果表明 ,采用高压高速射流技术 ,可以切割破岩、减轻近井地带应力集中和穿透近井污染带 ,其结果可以使油井获得增产增注。讨论了该技术用于定向射孔压裂进行油藏改造的可行性  相似文献   

12.
本文介绍了一种为实现复杂形状工件的精确水射流切割,本文设计了基于ABB六自由度机器人的水射流切割工作站,介绍了系统的硬件组成和工作原理。工作站以机器人控制柜为核心完成系统管理和工件切割。本文讨论了汽车仪表板切割程序结构和切割工艺。实践证明该系统性能稳定,能满足汽车仪表板切割要求。  相似文献   

13.
该文给出了近期研制的高压水切割机中加砂水射流喷射系统原理图及主要装置特性,重点阐述了吸入砂喷头的均衡进砂结构及试验研究,实验结果表明采用合理的喷头,可使高压喷射系统获得良好的切割性能,并使所研制的水射流系统具有工业应用前景。文末给出了上述喷射系统切割不同材料的部分试验结果。  相似文献   

14.
瓦斯治理的根本措施是抽放,然而应用单一钻孔预抽瓦斯,钻孔直径是决定抽放效果的关键因素.孔径小,其自由面小,瓦斯的排放速度低,等待开采的时间较长,影响了矿井的生产效率,而孔径又不能太大,否则在煤层综合应力下,孔的形成和孔的稳定性会受到破坏,而且孔径大的钻孔钻进速度较慢,效率较低,而且钻孔的有效煤孔段往往只占整个钻孔的一小部分,完全没有必要施工孔径较大的钻孔.介绍了一种新型高压水射流自旋式割缝技术,该技术可以有效解决上述问题.高压水射流自旋式割缝设备主要由高压水泵、水箱、高压胶管、高压密封钻杆、旋转接头、力矩喷头和喷嘴组成,该技术是在瓦斯抽采钻孔完成后,利用钻机将切割钻具输送至孔内,采取后退切割的方式,对钻孔内煤体进行切割,形成若干个垂直于钻孔方向的圆盘状缝隙,使孔内煤体暴露面积增加,同时由于高压注水作用,缝隙周围裂隙增加使煤体的透气性增强,从而有效提高抽采效率.试验发现:该技术的割缝半径为0.6~0.7m,使用该技术切割后,瓦斯涌出量大幅增加,百米瓦斯自排量和瓦斯抽放量分别是非切割钻孔的5.6和4.5倍,且衰减系数有所增加.  相似文献   

15.
高压水射流工艺是近年来研究开发的一项新技术,主要用来对油水井进行清洗、除锈、除垢、切割、破碎等,实验证明该技术具有成本低、效率高.无污染等优点。文章介绍了油水井结垢的形式、除垢的原理及方法、现场实验效果分析,对解除油水井结垢具有指导意义。  相似文献   

16.
孟祥宇 《安徽科技》2010,(12):50-51
水射流钻孔技术是20世纪70年代发展起来的一门新技术.并广泛应用于煤炭、机械、石油、冶金、建筑、消防、化工等行业,主要用来对物料进行切割、破碎和清洗。研究表明:水射流钻孔法被认为是最有潜力、效率最高、能量传输方便、易于实现的新型钻孔方法,在工作压力103MPa的情况下.高压水射流钻进的速度是普通回转钻头的2~4倍。  相似文献   

17.
欧美、日本等国已研究成功用超音速水射流切割各种非金属材料,并已达到实用水平。今后将进一步扩大应用范围。采用压力为2000~7000公斤/厘米~2的超高压水经微小喷孔(孔径为0.1~0.4毫米)喷出,喷射出的水射流速度可达到音速的3.5倍。这种超高压、超音速的水射流可以切割传统加工方  相似文献   

18.
为解决钻孔产生粉尘的治理方面问题,提出了钻孔口高压水射流吸除尘技术,分析了高压水射流吸风除尘原理,并将研制的高压水射流吸风除尘装置进行了钻孔现场的工业性试验。结果表明,钻孔口采用高压水射流吸风除尘技术降尘效果明显,且系统简单、使用方便。  相似文献   

19.
水能切割废钢喷嘴的设计与实验研究   总被引:1,自引:0,他引:1  
喷嘴是水射流切割系统的关键元件,通过研究一级喷嘴直径、二级喷嘴直径、混合腔直径和喉管距、系统工作压力、磨料直径大小等对轴向射流速度的影响,为水切割喷嘴的优化设计奠定了基础,其结果可为高压水切割工具的设计提供参考依据。  相似文献   

20.
高压水射流切割流场的数值模拟研究   总被引:7,自引:0,他引:7  
利用计算流体动力学(CFD)的方法对高压水射流切割进行了多相流的数值模拟,研究并分析了淹没流与非淹没流的影响、压力的影响、喷嘴直径的影响、喷嘴对射流的影响以及淹没与非淹没流下磨料的流动特性关系,其结果可为高压水切割工具的设计提供参考依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号