首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 328 毫秒
1.
以小麦秸秆为原料热解制备生物炭,分别用FeSO_4/FeCl_3和FeCl_3对生物炭进行表面改性。表征结果显示,改性生物炭表面存在磁性颗粒和Fe—O基团,负载铁后生物炭的比表面积和总孔体积显著增大。吸附实验结果表明,改性后生物炭吸附Cr(Ⅵ)的吸附性能优于未改性生物炭,且以FeSO_4/FeCl_3改性的生物炭吸附性能更佳,在Cr(Ⅵ)溶液初始pH为2、初始浓度为100 mg·L~(-1)、温度为30℃、振荡速率为150 r·min~(-1)、生物炭投加量为4 g·L~(-1)、吸附时间为48 h的条件下,FeSO_4/FeCl_3改性的生物炭对Cr(Ⅵ)的去除率达93.9%;负载铁生物炭对Cr(Ⅵ)的吸附符合拟二级动力学模型和Langmuir等温吸附模型。  相似文献   

2.
土壤氧化铁的活化与环境意义   总被引:4,自引:0,他引:4  
综述了土壤氧化铁的形态和土壤氧化铁活化的主要途径:渍水条件下氧化铁的还原、有机质活化、氧化铁表面羟基化和质子化及耕作方式和细菌等的作用.因活化后的氧化铁具有巨大的比表面积和很强的表面化学活性,能吸附众多的重金属(如镉、铜、锌、铅)、非金属(如氟、硒)和含氧阴离子(如磷酸盐),对于控制土壤中环境污染物的迁移和转化是十分有意义的.  相似文献   

3.
采用农业废弃物玉米芯作为原材料,通过生物碳化(HTC)的方法在不同温度下制备低成本、高性能吸附剂用生物炭.该生物炭具有介孔结构,表面含有丰富的含氧官能团,如—OH,C==O,C—O等,其种类及密度受水热温度的影响.以亚甲基蓝(MB)作为模型吸附剂,进一步研究了生物炭的吸附性能.吸附动力学研究表明符合拟二级动力学模型吸附行为,且225 ℃水热条件下得到的生物炭具有最大吸附量(41.37 mg/g)和最高吸附速率.等温吸附平衡数据与Langmuir等温模型吻合较好,表明生物炭对MB的吸附是单层吸附;生物炭表面含氧官能团与MB分子相互作用有助于吸附过程.  相似文献   

4.
分别以玉米秸秆、牛粪为原料,在500oC氮气保护的无氧气氛下热解生成玉米秸秆生物炭(BC)和牛粪生物炭(DMBC),分别探讨两种生物炭对水溶液中4种二价重金属离子(Cu~(2+),Pb~(2+),Ni~(2+)和Cd~(2+))的单一吸附效果,并进行4种重金属在生物炭上的竞争吸附实验,探讨金属离子间在生物炭上的相互作用关系。结果显示,两种生物质原料具有不同的元素组成,BC具有较大的比表面积,DMBC的平均孔径更大。在单一吸附过程中,BC对金属的吸附动力学过程具有相似性,而DMBC对不同金属的吸附速率差异较大。4种重金属离子在生物炭上的等温吸附过程可以用Langmuir方程较好地拟合,吸附容量的顺序为:Pb~(2+)Cu~(2+)Cd~(2+)Ni~(2+)。通过金属之间的竞争吸附实验,发现在生物炭上Pb~(2+)的竞争吸附能力最强,Cu~(2+)次之,而Ni~(2+)和Cd~(2+)竞争吸附能力较弱,其吸附过程容易受到其他二价金属离子的抑制。  相似文献   

5.
以水稻秸秆为材料,在不同温度下缺氧焙烧制备生物炭.进行FT-IR分析和比表面积测定;利用生物炭对模拟镉污染废水进行吸附试验.结果显示:制备的生物炭含有较多的含氧官能团,且比表面积较大;焙烧温度越高、时间越长,制备的生物炭吸附性能越强,但产率较低.综合分析可知,600℃下焙烧1 h制备生物炭经济合算,吸附效果良好,比表面积可达177.1 m2/g,对废水中Cd2+的去除率接近90%.  相似文献   

6.
以木屑、米糠、稻杆、玉米秸杆为原料, 在300, 400, 500, 600和700℃下, 氮气保护的无氧气氛中热解制成生物炭, 探讨不同类型生物炭对水溶液中重金属Pb2+和Cd2+的吸附效果。研究发现, 对于4种生物质原料而言, 在700℃下制备的生物炭对水溶液中Pb2+和Cd2+的吸附效果均优于其他制备温度下获得的生物炭, 其中稻杆生物炭(700℃)吸附容量最高, 对Pb2+和Cd2+分别为126.58和60.61 mg/g。利用X射线荧光光谱、环境扫描电子显微镜、气体吸附仪等方法, 分析700℃下制取的4种生物炭的矿物相元素组成、表面形貌及其比表面积。采用X射线衍射法分析4种生物炭样品在吸附重金属后的矿物相特性, 分析其重金属吸附机理。结果表明, 4种生物炭对Pb2+和Cd2+的吸附均满足Langmuir等温吸附模型, 同时XRD分析显示Pb2+和Cd2+在生物炭表面以碳酸盐、磷酸盐、硅酸盐和亚硫酸盐形式存在。  相似文献   

7.
以3种不同形貌的纳米TiO2为载体固定化脂肪酶,研究载体形貌、酶添加量、pH值、温度和时间对固载酶活性的影响.研究结果表明,纳米线形貌TiO2固定化效果最好,最优固定化条件为加酶量0.25g/25mL溶液、pH 7.0、固载温度40℃、固载时间6.3h.利用SEM、XRD、FT-IR等对固载酶及其界面进行表征,SEM和XRD结果表明,脂肪酶吸附于纳米线TiO2载体表面,且未改变纳米线TiO2的晶型结构;FT-IR表征表明固载酶含有脂肪酶的特征吸收峰;比表面积分析显示固定化后样品的BET明显减小,表明脂肪酶在纳米线TiO2表面进行物理型吸附.  相似文献   

8.
以人粪为原料制备生物炭,以得率、碘吸附值和亚甲基蓝吸附值为评价指标,考察制备过程中升温速率、热解温度和热解时间等因素对自制人粪生物碳吸附性能的影响。利用比表面积及孔径分析仪分析人粪生物碳的孔径分布和孔容以及比表面积。利用扫描电镜和XRD对生物碳的表面形貌和晶体结构进行分析。采用正交实验,确定最佳制备工艺条件。研究结果表明:在最优制备工艺条件下(升温速率15℃/min,热解温度600℃,热解时间70 min),人粪生物炭平均得率为49%,碘吸附平均值为682 mg/g,亚甲基蓝吸附平均值为93 mL/g。在最优条件下制得的人粪生物碳比表面积为690.8 m~2/g,总孔容积为0.329 cm~3/g,中孔容积和微孔容积分别为0.235 cm~3/g和0.087 cm~3/g,平均孔径2.832 nm。生物碳表面比较粗糙,呈现凹凸不平、蜂窝状结构,并且表面存在发达的、孔径不一的孔结构,孔的形状多样。自制人粪生物碳中一部分碳原子形成了比较稳定的片层石墨结构,有利于应用中生物炭性质保持相对稳定。  相似文献   

9.
以农业废弃物玉米芯为原料,在双氰胺和碳酸氢钠的共同作用下经热解、活化得到氮掺杂玉米芯生物炭(N-CBC).利用扫描电子显微镜(SEM)、X射线衍射(XRD)、比表面积分析(BET)和红外光谱(FTIR)等手段对生物炭掺杂前后的形貌、组成和结构进行了表征,并系统分析了N-CBC对水中四环素的吸附性能、吸附动力学和吸附热力学.结果表明,在玉米芯、碳酸氢钠和双氰胺的质量比为1∶2∶0.7,700℃热解3 h的条件下制备的N-CBC对四环素的吸附性能最优,N-CBC呈多孔纹理结构,比表面积高达1 670 m2/g,为有机污染物的吸附提供了大量的活性位点,同时,氮的掺杂利于形成π-π共轭结构,促进吸附过程的进行.吸附动力学、吸附等温线和吸附热力学研究表明,N-CBC对四环素的吸附符合准二级动力学模型,且为自发的多分子层物理吸附.  相似文献   

10.
生物炭对土壤重金属吸附机理研究进展   总被引:1,自引:0,他引:1  
生物炭是生物质在缺氧或是无氧条件下低温热解而成的高富碳产物,其精致的孔隙结构与较大的比表面积,丰富的表面官能团,使其对重金属离子具有较强吸附能力.近年来,生物炭修复土壤重金属污染已成为研究热点.文章对生物炭的性质、吸附重金属的作用机理、影响生物炭吸附的各个因素以及修复土壤后对重金属生物有效性等方面进行综述,最后提出生物炭未来在修复土壤重金属污染方面的研究方向.  相似文献   

11.
为了提高对废水中Cr (Ⅵ)的去除效率,获得高效且成本低廉的吸附剂,以农业废弃物玉米秸秆为原材料制备生物炭,并采用氯化锌对其进行改性。实验表明,在固液比为2 g/L、pH为2、Cr (Ⅵ)溶液初始质量浓度为100 mg/L、吸附时间为6 h时,最佳改性剂比例条件下改性炭的去除率能够达到99.3%,比未改性的生物炭高73.7%。此外,考察了单一因素改性剂比例、溶液pH、吸附温度、离子强度对吸附效果的影响。同时研究了改性炭对Cr(Ⅵ)的吸附动力学和吸附等温线。结果说明该吸附是自发、熵增的吸热过程且吸附反应符合准二级动力学方程和Langmiur等温模型,最大饱和吸附容量为72.46 mg/g。通过扫描电镜(scanning electron microscopy)、傅里叶红外光谱(Fourier transform infrared spectroscopy)、X射线衍射(X-ray diffraction)等方法对原炭(biochar)和改性生物炭(modified biochar)进行表征,分析表明改性炭微孔结构明显,表面粗糙,吸附位点增加,芳香化程度提高,从而提高了吸附性能,且锌以氢氧化物颗粒形式存在于生物炭表面。  相似文献   

12.
改性生物炭对镉离子吸附性能研究   总被引:5,自引:0,他引:5       下载免费PDF全文
以废弃松木屑为原料采用热分解法制备生物炭,并以氨气、硝酸、硫化钠和溴水4种化学试剂分别对其进行表面改性。采用BET、FTIR和Bohem滴定等技术对改性前后的生物炭进行表征,研究溶液pH值、初始溶液Cd2+浓度、吸附时间等因素对Cd2+吸附特性的影响,并探讨改性生物炭的吸附机理。结果表明,改性生物炭具有较大的比表面积、发达的孔结构和多种表面官能团;在一定范围内,随溶液pH值的增大、Cd2+浓度的升高、吸附时间的延长,改性生物炭对Cd2+的去除率逐渐提高,其中氨气改性生物炭对Cd2+的吸附效果最优,在溶液pH值为6、初始溶液Cd2+浓度为50mg/L、生物炭加入量为2g/L、吸附时间为6h时,氨气改性生物炭对Cd2+的吸附容量可达12.3mg/g;拟二级动力学方程和等温吸附模型均能较好地描述改性生物炭对Cd2+的吸附过程,其中氨气改性生物炭的Langmuir与Freundlich吸附常数最大。  相似文献   

13.
芳香族化合物在生物炭表面的分子行为、特别是弱相互作用机制尚不清楚.为揭示生物炭-苯酚间弱相互作用机制,本文采用等温吸附、吸附动力学实验,结合FT-IR表征,应用密度泛函理论(DFT),分析生物炭与苯酚分子间不同吸附构型的结合能、约化密度梯度(RDG)和电子密度拓扑关系.结果表明:等温吸附经72 h达平衡,pH显著影响饱和吸附量,pH=6时吸附量最大;生物炭表面官能团是吸附作用中心,吸附焓(ΔH)始终处于氢键键能范围内;4种吸附构型(A/B/C/D)的弱相互作用均由范德华力和弱氢键共同主导,B构型结合能最低、最稳定,C构型弱相互作用最强,D构型弱相互作用最弱.  相似文献   

14.
以有机硅季铵盐和活性炭为原料, 利用硅烷化反应, 制备一种新型吸附材料--共价键型季铵化活性炭(CQA)。通过FTIR, SEM和 BET对CQA进行表征, 验证季铵盐能够通过共价键结合, 成功地负载到活性炭表面, 并对活性炭的形貌结构产生重要影响。CQA对硝氮和磷酸盐的吸附能力都大大提高, 对含硝氮和磷酸盐的溶液的吸附实验表明: CQA对硝氮和磷酸盐的吸附机理均符合拟二级反应模型, 说明吸附过程主要由化学吸附控制; 吸附过程可以用Langmuir和Freundlich等温吸附模型较好地进行描述,最大吸附容量分别为14.829和8.442mg/g。最后考察pH对硝氮和磷酸盐吸附行为的影响, 结果表明, 当pH为4~9时, 比较适宜CQA对硝氮和磷酸盐同时去除。  相似文献   

15.
为了能以更有效更经济的方法去除废水中的Ni(Ⅱ),选用成本低廉的大豆秸秆制备生物炭作为吸附剂,研究了炭化温度、溶液pH、吸附剂投加量、溶液温度、Cd(Ⅱ)质量浓度对吸附效果的影响,得到了最佳的吸附条件,开拓了去除重金属镍的新方法,同时研究了生物炭对Ni(Ⅱ)的吸附动力学和吸附等温线。实验表明,大豆秸秆生物炭对Ni(Ⅱ)有较好的吸附性能,Ni(Ⅱ)质量浓度为20mg/L,炭化温度为500℃,pH为7,投加量为0.2g,室温为25℃,Cd(Ⅱ)质量浓度为0为最佳吸附条件。吸附反应符合准二级动力学方程。吸附等温线符合Langmuir模型,25℃时饱和吸附量为14.38mg/L。扫描电镜分析显示,炭化使得秸秆孔道结构增多,表面粗糙程度加剧,比表面积增大,从而提高了吸附性能。  相似文献   

16.
采用溶剂热法合成MOF-La材料,通过NaOH溶液对MOF-La进行调节,得到花型结构的MOF-La材料.利用X-射线衍射仪(XRD)、比表面及孔径分析仪和扫描电子显微镜(SEM)对MOF-La及花型MOF-La材料进行表征,采用紫外可见分光光度计(UV-vis)测试花型MOF-La材料吸附后水中磷酸盐的浓度,从而建立结构与性能的关系.结果表明:(1)MOF-La具有水稳定性;(2)花型MOF-La材料对磷酸盐的最大吸附容量为24.4/g;(3)准二级动力学模型能较好地描述花型MOF-La材料对水中磷酸盐的吸附过程,Langmuir和Freundlich等温吸附模型均能拟合花型MOF-La材料对水中磷酸盐的吸附数据.  相似文献   

17.
以钍(IV)为模板离子,制备了基于硅胶表面修饰的离子印迹聚合物.采用傅立叶变换红外光谱和N2吸附-脱附对其进行了结构表征.通过静态分析和动态分析系统研究了印迹聚合物对钍(IV)的吸附行为及选择性,结果表明该印迹材料对钍(IV)的等温吸附线属于Langmuir吸附模型.与非印迹聚合物相比,离子印迹聚合物对钍(IV)离子有较好的选择识别能力,模板离子钍(IV)相对竞争离子铀(VI)、镧(III)和铈(III)的选择系数分别是50.8,78.3和82.6.并且吸附速率快,10 min即达到吸附平衡,最大吸附容量为56.8 mg/g,可望在分离富集领域获得实际应用.  相似文献   

18.
采用液相双滴共沉淀法制备镁铝水滑石,在350℃下焙烧成为焙烧态水滑石(CHTlc-350)样品。采用XRD、FT—IR对样品进行分析,研究了CHTlc-350对磷酸根的吸附特性;探讨了时间、pH、吸附剂投加量对吸附磷酸根性能的影响。结果表明,当初始pH为5,吸附剂与溶液接触24 h时,CHTlc-350对磷酸根的吸附效果最佳。CHTlc-350对磷酸根的吸附符合Langmuir吸附等温线和伪二级动力学模型;其最大理论吸附量达到90.09 mg/g。CHTlc-350可有效去除废水中的磷酸根,磷浓度为40 mg/L,吸附剂浓度为1.0 g/L时,其去除率可达99.44%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号