首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
该文提出一种基于边界支持向量的自适应增量支持向量机,对每轮训练的样本集提取其边界支持向量,从而减少训练向量数目,提高训练效率.通过自适应调整参数,可以更好地适应新增样本.采用UCI(University of California Irvine)机器学习数据库和Statlog数据库对本文方法进行验证,实验结果表明本文方法的训练时间优于标准支持向量机和一般增量支持向量机.其分类精度也明显优于一般增量支持向量机,在训练数据较少时,其分类精度与标准支持向量机相差不大,但随着训练数据的增加,分类精度逐渐超越标准支持向量机.该文的方法更适合大规模数据集的增量学习.  相似文献   

2.
在分析现有的基于高斯核的支持向量机(包括基于K-邻域法的支持向量机)的优缺点的基础上,通过对支持向量机之所以能够描述数据集的分布特征的本质进行分析,突破目前在构造支持向量机中存在的"所有支持向量与样本之间的在特征空间中的内积所对应的核函数参数一定要相等"的这一苛刻要求,提出了用于模式识别的基于正反馈的支持向量机.给出了基于正反馈的支持向量机的算法.通过对人工数据和现实数据的仿真实验,表明基于正反馈的支持向量机在推广性能方面明显优于现有的支持向量机.  相似文献   

3.
基于支持向量机的图像识别   总被引:5,自引:0,他引:5  
支持向量机是统计学习方法,正成为当今研究的热点.支持向量机在模式识别和文本分类等方面获得了极大的成功,分类的准确率很高,用支持向量机的方法处理一些二值图像和灰度图像,能获得较好的统计结果.从中摸索出了一种特征向量集的选取方法,讨论了判断结果优劣的标准,比较了支持向量机方法与其他方法得到的结果,得出了重要结论:用支持向量机识别图像的边缘具有非常优异的统计性能.  相似文献   

4.
费娜 《科技资讯》2011,(30):89-90
支持向量机是建立在统计学习理论基础上的一种小样本机器学习方法,用于解决二分类问题。本文阐述了支持向量机的理论基础并对核函数的参数选择进行了分析研究。  相似文献   

5.
娄小燕  刘白林 《科技信息》2009,(36):I0125-I0126
在科学实验研究中,经常需要实验的观测数据,来寻求两个物理量之间近似的解析函数关系和曲线方程,这就是人们常说的数据拟合或曲线拟合,而且经常要从这些已知数据中总结规律,用以预报未知。本文引入支持向量机作为背景进行曲线拟合。此法能满足在小样本情况研究统计学习规律的理论,通过引入结构风险最小化准则来控制学习机器的容量,从而刻画了过度拟合与泛化能力之间的关系。  相似文献   

6.
基于支持向量机的石油需求预测   总被引:1,自引:0,他引:1  
支持向量机是基于结构风险最小化原理的一种学习技术,是一种具有很好泛化能力的预测工具,它有效地解决小样本、非线性、高维数、局部极小等问题.利用支持向量回归机对我国石油需求量进行预测,并通过实验与神经网络的预测结果进行比较,表明支持向量机具有更高的预测精度.  相似文献   

7.
首先利用虹膜处理系统对采集到的虹膜图像预处理,得到条形图像;然后利用主元分析方法(即PCA方法)进行特征提取,以达到降维的目的,得到的一个训练样本对应一个40维的向量;最后利用支持向量机使用序列最小优化算法进行虹膜识别,平均识别率达到了94.3%。结果表明,文中的方法取得了较好的效果,降低了训练时间,提高了训练效率。  相似文献   

8.
基于支持向量机的缺陷识别方法   总被引:6,自引:0,他引:6  
针对缺陷检测存在的检测手段落后、工序繁琐、准确率低、不易在线实施、受人为因素影响,以及用人工神经网络对小样本事件进行缺陷识别存在的过学习、推广性差等问题,从数据挖掘的角度,提出了直接从形成缺陷的影响因素着手,先消除工艺参数的冗余和噪声,再运用支持向量机分类算法,进行自动缺陷识别的新方法。通过具体的试验表明:该方法具有成本低廉、准确率高、推广性强、容易在线实施等技术优势。  相似文献   

9.
基于支持向量机的异常检测   总被引:3,自引:1,他引:3  
提出一种使用支持向量机(SVM)进行计算机系统实时异常检测的方法,内容涉及到一种对支持向量机方法的改进算法、对数据预处理的方法及SVM核函数的选取.试验结果表明采用这一算法进行入侵检测具有准确率高、计算简单、占用的存储空间小等优点.  相似文献   

10.
车牌识别(LPR)是智能交通中关键技术之一.针对目前车牌识别技术存在的一些问题,详细分析基于支持向量机的车牌字符识别方法,字符特征提取方式采用一种基于半分积分投影法,选用高斯径向基作为核函数对字符进行训练.仿真实验结果表明效果良好.  相似文献   

11.
基于粗糙集的支持向量机故障诊断   总被引:2,自引:0,他引:2  
该文结合粗糙集属性约简及支持向量机分类机理,提出了一种新的故障诊断方法。首先利用粗糙集对过程特征变量进行约简,去除冗余的过程信息,并降低过程数据的维数,获得具有代表性的过程特征信息。基于该特征信息建立支持向量分类机用于故障的诊断。以高压直流输电系统为例,对交流单相接地故障和直流接地故障进行诊断,诊断时间分别为12ms和11ms,诊断正确率分别为98.8%和96.8%。  相似文献   

12.
使用回归分析策略以文档满足用户的信息需求程度作为回归分析的目标值,利用回归支持向量机构建了信息检索模型.新模型不仅提供了融合不同来源特征的灵活框架,而且由于使用回归支持向量机寻找具有ε不敏感损失的回归函数,因此具有良好的泛化性能.实验表明,新模型性能优于目前主流的基于语言模型的信息检索方法.  相似文献   

13.
基于支持向量机的模糊回归估计   总被引:1,自引:0,他引:1  
支持向量机是在统计学习理论上发展起来的新一代学习方法,该方法在模式识别、回归估计、概率密度函数估计等方面都获得了较好的应用.基于含有不确定性信息的问题,引入了模糊支持向量机.针对回归估计问题,利用支持向量机的基本思想提出单参数约束下的支持向量机模糊线性回归模型,并给出模型的解,实验结果表明,与其它的模糊回归估计相比该方法得到了更加满意的最优解并且缩短了运行时间.  相似文献   

14.
基于支持向量机的故障诊断方法   总被引:12,自引:0,他引:12  
提出了基于支持向量机的故障诊断方法和步骤。诊断实例表明,与神经网络故障诊断方法相比,诊断小样本分析的支持向量机故障诊断方法具有分类能力强、推广能力好的特点。  相似文献   

15.
基于支持向量机的发动机故障诊断   总被引:4,自引:0,他引:4  
针对发动机的故障特点,提出了一种基于主分量分析和支持向量机的发动机故障诊断方法.利用小波包对声级计采集到的解放CA141型汽车发动机声音信号进行特征提取,应用主分量分析方法在不损失有效信息的情况下,将原始特征向量中的冗余信息约简,在此基础上通过支持向量机对发动机故障进行分类.诊断结果表明,该方法在保证较高诊断精度的同时,可将支持向量机的训练时间缩短1/3,从而提高了故障诊断效率.  相似文献   

16.
云计算框架大大改进了并行算法的实现难度,但是大部分算法有其局限性.介绍了MapReduce(映射化简)的基本实现原理和调度模型的缺陷,提出了基于支持向量机的的MapReduce进化算法,并给出了基本模型及实现.运用Hadoop云计算平台进行了仿真验证,实验结果表明,基于支持向量机的MapReduce计算框架在候选云节点的调度分配的准确性上有明显提高,并且加快了数据迭代的效率.  相似文献   

17.
刘宇卓 《科技资讯》2014,12(21):80-80
滚动轴承是各种机械设备中最常见的零部件,同时也是易损坏的零件之一.机械的许多故障都与滚动轴承有关,它的运行状态是否正常往往直接影响到整台机器的性能.因此开展对滚动轴承的故障诊断具有很现实的意义.再分析了支持向量机的基本理论后,提出了基于支持向量机的滚动轴承故障诊断方法,并且进行了MATLAB仿真实验,验证支持向量机的诊断效果,实验结果表明此方式适用于滚动轴承故障诊断.  相似文献   

18.
在解决多类分类问题的新算法--K-SVCR算法的基础上,构造了一种基于线性规划的K-SVCR模型,采取解决线性规划的有效算法:不可行原-对偶内点法--Melirotra预测校正算法,对其进行求解.在UCI数据库上进行的试验结果表明,此算法在速度和精度上比基于二次规划K-SVCR的算法都有很好的表现.  相似文献   

19.
数学公式识别在拍照搜题、自动阅卷和题库建设等智慧教育任务中有着广泛的应用.由于这些应用中数学公式大多以图片的形式存在,因此识别图片中的数学公式成为智慧教育领域的重要研究问题之一.数学公式结构复杂,从图片中识别数学公式远比一般的光学符号识别要复杂得多.将公式识别分为字符分割、符号识别和公式重组这3个步骤:首先,综合运用投影和连通域方法将字符从图片中分割出来;其次,基于单个字符的区域像素数占总像素比例提取字符特征,建立监督学习模型识别字符;最后,利用每个字符在公式中出现的位置对数学公式进行重组.真实数据集上的实验结果表明,本文提出的数学公式识别方法准确率高达98.0%.  相似文献   

20.
主要研究了基于支持向量机的特征选择方法——特征权法,通过对两组数据进行试验,说明了特征权法在分类效果上优于F-得分法和支持向量机.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号