首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
提出了一种带辅助支路的移相全桥零电压PWM变换器。详细分析了该变换器的工作原理,讨论了电路的参数,进行了软件仿真,并在一台功率为1kW、工作频率为100kHz的通信用开关电源装置上进行了实验验证。仿真和实验结果都证明了增加的辅助电路能够有效地减小变换器副边占空比的丢失,并使滞后桥臂的ZVS范围受到的影响最小。  相似文献   

2.
利用耦合输出电感进行次级箝位移相控制;采用了无损耗元件及有源开关的简单辅助电路;副边整流二极管的电压应力和传统的硬开关电路一样小;轻载时箝位电容的充、放电电流能根据负载情况自动调整,可保证在很宽的负载范围内变换器都有高效率;辅助回路二极管Dc可以实现软关断,因而反向恢复影响小;本变换器不存在原边环流,因而可以提高变换效率。文中分析了该新型拓扑的工作原理,提出了参数设计依据,进而推导了变换器各种状态时的参数计算方程;采用此方案成功研制了48V/20A软开关电源,进行了参数设计,并给出了其仿真和试验结果。试验结果表明该变换器在1/3负载以上时效率可以高迭92%以上。  相似文献   

3.
分析了改进型倍流整流电路ZVS PWM全桥变换器的原理,给出了参数选择原则和优化方法,使变换器的主开关管在较宽的负载范围内实现ZVS,副边无占空比丢失,副边整流二极管实现自然换流,无尖峰电压。  相似文献   

4.
移相全桥零电压PWM变换器的建模与仿真   总被引:4,自引:0,他引:4  
在对称相全桥零电压PWM变换器工作原理分析的基础上,建立了移相桥零电压PWM变换器的小信号模型,给出了变换器频域和时域的仿真结果。  相似文献   

5.
讨论了一种新颖的有限双极性控制ZVZCS PWM DC/DC全桥变换器,通过在次级增加一个小电容和两个小二极管组成的简单辅助电路,为主开关提供实现ZVZCS开关条件,也为副边整流提供箝位电压.与以往的移相ZVS PWM全桥变换器相比,文中所提出的变换器具有辅助电路简单,负载范围宽、环流自适应调整等优点.详细分析了该变换器的工作原理及参数设计,通过一台2.5kW、100kHz模型的仿真实验,验证了变换器工作原理的正确性.  相似文献   

6.
采用了一种新颖的零电压零电流开关(ZVZCS)PWM全桥移相DC/DC变换器,通过增加一个隔直电容和一个饱和电感的方法实现了变换器的软开关.详细地分析了该变换器的工作原理及相关重要参数的设计.现场试验表明,该系统工作稳定,性能可靠,效率高,体积小,功率器件IGBT的损耗明显得到了降低.拖尾电流得到有效抑制.  相似文献   

7.
移相全桥软开关变换器拓扑分析   总被引:2,自引:0,他引:2  
移相全桥软开关变换器从基本的移相全桥(FB)零电压(ZVS)脉宽调制(PWM)变换器,发展到移相全桥零电压零电流(ZVZCS)PWM变换器,及移相全桥零电流(ZCS)PWM变换器,进而又产生一系列其它新型的移相全桥电路,构成了这一类很具有发展和应用前景的变换器.比较分析了上述3类主要的移相全桥软开关变换器的拓扑结构、工作特点和各自的优缺点.改进的FB-ZVS-PWM变换器扩大了滞后臂ZVS负载范围.FB-ZVZCS-PWM变换器解决了滞后臂软开关负载范围问题,滞后臂较适合用绝缘栅极双极型晶体管(IGBT).FB-ZCS-PWM变换器可以实现各个功率管的ZCS,更适合大功率场合.  相似文献   

8.
为解决传统DC/DC移相全桥变换器轻载零电压开通(Zero-Voltage Switching,ZVS)性能丢失与副边侧二极管严重的反向恢复问题,本文通过将传统DC/DC移相全桥变换器副边侧的滤波电感前移至原边侧,实现重载下原边侧全部开关管的ZVS特性,轻载下滞后桥臂开关管的零电流开通与关断(Zero-Current Switching,ZCS)特性.该拓扑可实现副边二极管的电流在重载下自然过零,轻载下进入电流断续模式(Discontinuous Conduction Mode,DCM),有效削弱二极管反向恢复问题.通过对该拓扑电流连续模式(Continuous Conduction Mode,CCM)与DCM模式进行详细分述,阐明ZV-ZCS特性的实现机理,通过建立该拓扑不同模式下的增益方程,推导关键参数的设计法则,最后通过PSIM仿真与2 kW的实验样机验证了该拓扑的性能与理论分析的正确性.  相似文献   

9.
讨论大功率全桥移相软开关ZVS—PWM变换器的设计方法。给出输入为540V,输出为300V与21A的电路参数以及仿真结果,仿真结果表明此方法所设计的参数正确,能满足性能指标和前后桥臂的零电压开关条件。  相似文献   

10.
通过对移相控制全桥零电压开关变换器的运行过程的详细分析,研究了超前桥臂与滞后桥臂的开关互换动作在变换器功率传输过程中所起的作用,另外,由于变换器的输出滤波部分与Buck变换器类似,因此,可将在Buck变换器闭环控制设计中获得成功应用的滑膜控制引入移相控制全桥零电压开关变换器中,仿真结果表明,滑膜控制的变换器闭环系统对输入电源扰动具有较好的鲁棒性,对负载扰动的瞬态响应特性也较为理想。  相似文献   

11.
带饱和电感的移相全桥PWM变换器软开关分析   总被引:2,自引:0,他引:2  
带饱和电感的移相全桥零电压开关PWM变换器与传统的移相全桥零电压开关PWM变换器相比,具有较宽的零电压开关负载范围,较小的循环能量和较小的占空比损失.在详细分析其工作原理的基础上,着重对参数设计和滞后桥臂的死区时间设置进行了讨论,给出了设计方法,仿真结果证实了理论分析的正确性.  相似文献   

12.
介绍一种移相控制软开关PWM开关式电源,简述了工作原理,讨论关键器件逆变变压器、谐振电感、谐振电容的参数设计问题,分布参数的影响下实现软开关的条件.说明了常规器件和逆变变压器的设计原则,及谐振器件参数的确定方法,并且给出了试验结果.  相似文献   

13.
介绍了一种新型零电压转换(Zero Voltage Transition,简称ZVT)脉宽调制(Pulse Width Modulated,简称PWM)Buck变换器,该Buck变换器能在整个周期范围内实现主开关管的零电压开关(ZVS)、辅助开关管的零电流开关(ZCS)和所有无源功率器件的零电压开关(ZVS);相对于硬开关Buck变换器,该新型Buck变换器的主开关和辅助开关的电压电流应力都很小.详细分析了该变换器的工作原理,并通过仿真验证了该电路的可行性.  相似文献   

14.
介绍一种移相控制软开关PWM开关式电源 ,简述了工作原理 ,讨论关键器件逆变变压器、谐振电感、谐振电容的参数设计问题 ,分布参数的影响下实现软开关的条件 .说明了常规器件和逆变变压器的设计原则 ,及谐振器件参数的确定方法 ,并且给出了试验结果  相似文献   

15.
针对开关电源并联技术体积大、可靠性低及控制复杂等缺点,运用移相全桥软开关技术设计了一种大功率高频稳压电源,利用谐振技术实现了零电压高效转换。在Buck电路平均模型等效电路基础上,推导了移向全桥电路小信号模型,并设计了内环电流环控制和外环电压环控制的双闭环变换器控制系统,完成了仿真分析。最后,试制了一台输出48 V/50 A的样机,最高效率达95.2%,实验波形验证了控制方案的有效性和可行性。  相似文献   

16.
为降低IGBT在关断过程中所产生的损耗,提高电源的开关频率.通过在变压器副边增加一个由谐振电感、谐振电容、辅助箝位二极管以及辅助开关管组成的辅助电路,在主开关管关断之前短暂开通辅助开关管,通过谐振电感和谐振电容之间的谐振使原边电流迅速复位,从而实现主电路开关管的零电流开关(ZCS).实验结果表明,此变换器可在全负载范围内实现所有开关管的ZCS和输出整流管的软换流,其辅助电路的谐振电感还具有帮助主电路实现主开关管软开通的功能.这种拓扑结构简洁,可以较好地实现软开关且不会增大整流二极管的电压应力,变换器的效率也达到了90%以上且有提升空间.  相似文献   

17.
移相全桥ZVS软开关变换电路具有控制简单、可靠性高和效率高等优点,但也存在占空比丢失、滞后桥臂软开关不易实现、整流侧存在尖峰电压等问题。为了弥补占空比的丢失,对移相全桥的原理及工作模态进行深入分析,提出使用饱和电感的方法来解决此拓扑结构存在的占空比丢失问题,最后利用MATLAB/simulink仿真软件对PSFB-ZVS拓扑进行仿真,结合合理的参数,验证了理论分析的正确性和有效性。  相似文献   

18.
介绍了软开关PWM技术与传统PWM技术的不同以及软开关PWM的分类,在此基础上,系统的分析了ZVS PWM工作过程和其特性。最后,对不同类型电路的适用场合做了简要概括。  相似文献   

19.
提出了一种新的零电压转换(ZVT)软开关PWM转换器,给出了boost转换器的电路,详细分析了它的工作原理,并给出了主要变量的波形。  相似文献   

20.
BUCK-BOOST DC/DC变换器RHP零点研究   总被引:1,自引:1,他引:0  
对于BUCK-BOOST DC/DC变换器,如何获得较大的稳定裕度和良好的高频瞬态性能一直以来都是令研究人员棘手的问题。要使这种变换器稳定工作,往往需要在一个很低的频率下就滑离控制电路的增益,文章基于变换器的占空比控制方式与电流控制公式分析了右半平面零点的动态特性,为提高电源系统的稳定性提供了理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号