首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In recent thirty years, with deep-going studies of the problems of regional environmental quality and global climate change, 210Pb has been found to have wide appli-cations in tracing the aquatic sedimentation, catchment’s erosion and the path of atmospheric transfer. 222Rn pro-duced from decay of the U-Ra series in surface rocks and soils diffuses in the atmosphere and continues to decay into 210Pb. This part of the 210Pb, due to separation from its parent 226Ra, is generally referred to a…  相似文献   

2.
The Hilly Sichuan Basin is one of the most populous agricultural regions in the Upper Yangtze River Basin and has an area of about 105000 km2. Cropland ratios and population densities vary between 0.3 and 0.7 and be-tween 400 and 800 people/km2, respectively, in the Si-chuan basin. The basin is considered as one of the most severely eroded regions in the Upper Yangtze River Basin as well in China. Soil erosion rates were reported mostly to be greater than 5000 t·km-2·a-1 by the first st…  相似文献   

3.
In order to evaluate bioturbation in sediments from the COMRA Polymetailic Nodule Area in the northeast tropical Pacific, excess ^210Pb profiles in sediments cores collected with multiple corers during R/V DAYANGYIHAO Environmental Program Cruise in 1998 were measured by direct gamma assay using Ortec HPGe GWL series well-type coaxial low background intrinsic germanium detectors. A steady-state diffusion model of excess ^210Pb profiles suggests that bioturbation mixing depths and biodiffusion coefficients are 16 cm and 2.75 cm2/a in East Zone, and 6 cm and 0.26cm^2/a in West Zone, respectively. Furthermore, the observations of macrofauna and measurements of total organic carbon (TOC) content in sediments suggest that bioturbation is directly controlled by species and abundance of benthic fauna, such as polychaete, and the bioturbation mixing depth and intensity are positively correlated with the organic matter content.  相似文献   

4.
Using laser 40Ar/39Ar dating method, we have gotten the metamorphic ages of lawsonite blueschist and epidote blueschist from Jiuquan, northern Qilian Mountain, NW China. The high quality laser 40Ar/39Ar dating of glaucophane from lawsonite blueschist gives an isochron age of 413±5 Ma. The isochron age obtained from phengite in epidote blueschist is 415±7 Ma. These data, combining with peak metamorphic P-T conditions and regional geological setting, allow us to infer that the lower limit of the ages of the prograde subduction metamorphism from lawsonite blueschist facies to epidote blueschist facies occurred at ca. 413–415 Ma, which also suggests that the formation of lawsonite blueschist in the northern Qilian Mountain maybe resulted from the corner flow in the cold subduction zone. This study shows that the final closing time of the northern Qilian remnant oceanic basin is about 413–415 Ma, which also represents the convergent age between the North China Craton and the Qaidam block.  相似文献   

5.
It is difficult to date pyroclastic rocks, for almost all the dating methods, due to the multiple sources during their formation. ^40Ar/^39gAr incremental heating results on groundmass selected from the samples show that the age spectra are meaningless geologically. However, singe crystal total fusions of CO2 lasing on the sanidine separates could yield rational 4^40Ar/^39Ar results and distinguish their sources in this study. Timing on three formations of the Moshishan Group, after avoiding the exotic and altered grains by lasing on the single sanidine separate, was reported in this paper. The lowermost portion of the Chawan Formation gives an age of 113.7±0.3 Ma; the lower part of the Xishantou Formation was formed 116.4±0.4 Ma ago and the bottom of the Gaowu Formation took its shape at 118.4±0.4 Ma. These new ages are much younger than the previous ones, suggesting that these thick volcanic formations had been formed in very short durations.  相似文献   

6.
Due to a lack of suitable minerals, the gas/oil emplacement ages have never been accurately obtained before. CH4-CO2-saline- bearing secondary inclusions are found in quartz from the volcanic rocks of the Yingcheng Formation, the container rocks of the deep CO2 gas reservoir in the Songliao Basin. The inclusion fluid was trapped into microcracks in quartz during the gas emplacement and accumulation, providing an optimal target for the 40Ar-39Ar stepwise crushing technique to determine the CO2 gas emplacement age. 40Ar-39Ar dating results of a quartz sample by stepwise crushing yield a highly linear-regression isochron with an age of 78.4±1.3 Ma, indicating that the accumulation of the deep CO2 gas reservoir in the Songliao Basin occurred in the late Cretaceous. This is the first time to report an exact isotopic age for a CO2 gas reservoir, which indicates that the 40Ar-39Ar dating can serve as a new technique to date the oil/gas emplacement ages.  相似文献   

7.
The high spinning speed 1H magic angle spinning nuclear magnetic resonance (1H MAS NMR) technique was employed to distinguish the two groups of surface hydroxyls of kaolinite and investigate the intercalation mechanism of kaolinite/formamide compound. The proton chemical shifts of the inner hydroxyl and inner surface hydroxyl of kaolinte are in the range of δ−1.3–−0.9 and δ 2.4–3.0 respectively. After formamide intercalation three proton peaks were detected. The proton peak of the inner surface hydroxyls of the intercalation compound shifts to high-field with δ 2.3–2.7, which is assigned to the formation of the hydrogen bond between the inner surface hydroxyl and formamide carbonyl group. Whereas, the proton peak of the inner hydroxyl shifts to δ −0.3 toward low-field, that is attributed to van der Waal’s effect between the inner hydroxyl proton and the amino group proton of the formamide which may be keyed into the ditrigonal hole of the kaolinite. The third peak, additional proton peak, is in the range of δ5.4–5.6, that is ascribed to the hydrogen bond formation between the amino group proton of formimide and SiO4 tetrahedral oxygen of the kaolinite.  相似文献   

8.
The Na^+/H^+ antiporter plays key roles in maintaining low cytoplasmic NaNa^+ level and pH homeostasis, while little is known about the Carboxyl-terminal hydrophilic tails of prokaryotic antiporters. In our previous study, the first Na^+/H^+ antiporter gene nhaH from moderate halophiles was cloned from Halobacillus dabanensis D-8 by functional complementation. A topological model suggested that only nine amino acid residues (^395PLIKKLGMI403) existed in the hydrophilic C-terminal domain of NhaH. The C-terminal truncated mutant of NhaH was constructed by PCR strategy and designated as nhaH△C. Salt tolerance experiment demonstrated that the deletion of hydrophilic C-terminal nine amino acid residues significantly inhibited the complementation ability of E. coil KNabc, in which three main Na^+/H^+ antiporters nhaA, nhaB and chaA were deleted. Everted membrane vesicles prepared from E. coil KNabc/nhaHAC decreased both Na^+/H^+ and Li^+/H^+ exchange activities of NhaH, and also resulted in an acidic shift of its pH profile for Na^+, indicating a critical role of the short C-terminal domain of NhaH antiporter in alkali cation binding/translocation and pH sensing.  相似文献   

9.
Yang  WeiFeng  Huang  YiPu  Chen  Min  Qiu  YuSheng  Peng  AnGuo  Zhang  Lei 《科学通报(英文版)》2009,54(12):2118-2123
Disequilibria between ^210Po and ^210Pb in the upper water and their potential applications as a proxy of particle export and remineralization were examined in the Southern Ocean (station IV3) and the South China Sea (NS44). ^210po was deficit in surface waters but excessive relative to ^210Pb in subsurface waters. Good positive correlation between ^210Po and particulate organic carbon (POC) indicated deficits and excess of ^210Po resulted from particulate organic matter (POM) export and remJneralization respectively, which was also supported by the decreased δ^13C and increased δ^15N downwards as a result of particle remineralization. On the basis of ^210Po/^210Pb box-model, POC export flux out of the surface waters were 1.2 mmol C. m^-2. d^-1 and 2.3 mmol C. m^-2. d^-1 for station NS44 and IV3, respectively. In the subsurface waters, remineralization fluxes of ^210Po were 0.062 Bq. m^-2.d^-1 and 0.566 Bq.m^-2.d^-1 for station NS44 and IV3 along with the recycle efficiency of 52±26% and 119±52%, respectively. Remineralized fluxes of POM derived from ^210Po and exported POC were 0.6 mmol C.m^-2.d^-1 and 2.7 mmol C. m^-2. d^-1 for NS44 and IV3. This study suggested that ^210Po was a powerful tracer of particle export and remineralization.  相似文献   

10.
Experimental studies were conducted on the feasibility of aerobic granular biomass as a novel type of biosorbent for Pb^2+ removal. The results show that the initial pH, Pb^2+ concentration (Co) and biomass concentration (X0) affected the biosorption process significantly. Both the Freundlich and Langmuir isotherm models describe the biosorption process accurately, with correlation coefficients of 0.932 and 0.959 respectively. The Pb^2+ biosorpUon kinetics is interpreted as having two stages, with the second stage described reasonably well by a Lagergren pseudo-second order model. Moreover, the surface change of granular biomass after the Pb^2+ biosorption process appears to be caused by ion exchange and metal chelation according to the analysis results of Environmental Scanning Electron Microscopy (ESEM) and Energy Dispersive X-ray Spectroscopy (EDX).  相似文献   

11.
We explore nitric oxide (NO) effect on K^+in, channels in Arabidopsis guard cells. We observed NO inhibited K^+in, currents when Ca^2+ chelator EGTA (Ethylene glycol-bis(2-aminoethylether)-N,N,N′,N;tetraacetic acid) was not added in the pipette solution; K^+in currents were not sensitive to NO when cytosolic Ca^2+ was chelated by EGTA. NO inhibited the Arabidopsis stomatal opening, but when EGTA was added in the bath solution, inhibition effect of NO on stomatal opening vanished. Thus, it implies that NO elevates cytosolic Ca^2+ by activating plasma membrane Ca^2+ channels firstly, then inactivates K^+in, chartnels, resulting in stomatal opening suppressed subsequently.  相似文献   

12.
The Sr3SiO5:Eu^2+ phosphor was synthesized by high temperature solid-state reaction. The emission spectrum of Sr3SiO5:Eu^2+ shows two bands centered at 487 and 575 nm, which well agree with the theoretic values of emission spectrum. The excitation spectrum for 575 nm emission center has several excitation bands at 365, 418, 458 and 473 nm. And the results show that the emission spectrum of Sr3SiO5:Eu^2+ is influenced by the Eu^2+ concentration. The relative emission spectra of the white-emitting InGaN-based YAG:Ce^3+ LED and Sr3SiO5:Eu^2+ LED were investigated. The results show that the color development of InGaN-based Sr3SiO5:Eu^2+ is better than that of InGaN-based YAG:Ce^3+, and the CIE chromaticity of InGaN-based Sr3SiO5:Eu^2+ is (x=0.348, y=0.326).  相似文献   

13.
Carbon isotopic compositions of soil CO2 in rainy season (July) from two natural soil profiles (DHLS & DHS) in the monsoon evergreen broadleaf forest in the Dinghushan Biosphere Reservoir (DBR), South China, are presented. Turnover and origins of soil CO2 are preliminarily discussed in this paper. Results show that the content of soil CO2 varies between 6120 and 18718 ppmv, and increases with increasing depth until 75 cm, and then it declines. In DHLS, soil CO2 δ13C ranges from −24.71‰ to −24.03‰, showing a significant inverse correlation (R2=0.91) with the soil CO2 content in the same layer. According to a model related to soil CO2 δ13C, the soil CO2 is mainly derived from the root respiration (>80%) in DHLS. While in DHS, where soil CO2 ? 13C ranges from −25.19‰ to −22.82‰, soil CO2 is primarily originated from the decomposition of organic matter (51%–94%), excluding the surface layer (20 cm, 90%). Radiocarbon data suggest that the carbon in soil CO2 is modern carbon in both DHLS and DHS. Differences in 14C ages between the “oldest” and “youngest” soil CO2 in DHLS and DHS are 8 months and 14 months, respectively, indicating that soil CO2 in DHLS has a faster turnover rate than that in DHS. The 14C values of soil CO2, which range between 100.0‰ and 107.2‰ and between 102.5‰ and 112.1‰ in DHLS and DHS, respectively, are obviously higher than those of current atmospheric CO2 and SOC in the same layer, suggesting that soil CO2 is likely an important reservoir for Bomb-14C in the atmosphere.  相似文献   

14.
Mid-troposphere CO2 data retrieved by the AIRS (atmospheric infrared sounder) were validated with five ground-based stations and aircraft measurements in the Northern Hemisphere. AIRS CO2 products show good agreement with ground and aircraft observations. The data had a monthly average accuracy better than 3 ppmv. In this study, the spatial and temporal distribution of mid-troposphere CO2 from January 2003 to December 2008 was analyzed based on this satellite product. The average concentration of atmospheric CO2 was higher in the Northern Hemisphere than in the Southern Hemisphere. The yearly average results show a gradual increase from 2003 to 2008. In China, the annual growth rate was about 2 ppmv/a, similar to the United States, Europe, Australia and India, but was slightly lower than Canada and Russia. Mid-troposphere CO2 concentrations were higher over northern China than over southern areas, due to differences in natural conditions and industrial layout. There were four centers of high CO2 concentration between 35° and 45°N over China, with low concentrations over Yunnan Province. There was a significant seasonal CO2 variation with peak concentration in spring and the lowest concentration in autumn.  相似文献   

15.
Surface soil samples collected over a high spatial resolution in eastern China were analyzed for carbon isotope composition (δ^13C) of total organic carbon (TOC) and higher plant-derived long-chain n-alkanes, with the latter reported as weighted mean values. The two sets of δ^13C values are significantly correlated and show similar trends in spatial variation. The spatial distribution of δ^13C shows less negative values in the mid-latitudes between 31°N and 40°N and more negative ones at higher and lower latitudes. This is consistent with previously reported carbon isotope data from surface soil phytoliths in the same region and suggests that the mid-latitude area provides relatively favorable growing condi- tions for C4 plants. Furthermore, δ^13C values of both TOC and long-chain n-alkanes from 12 surface soil samples collected from a small grassland in north China displayed similar carbon isotope values and the difference between paired δ^13C of a soil samples remains relatively constant. Our data demonstrate that in eastern China, soil δ^13C composition of both TOC and long-chain n-alkanes is effective indicators of C3/C4 ratios of the prevailing vegetation. This work suggests that -22‰ and -32‰ are good es- timated end members for the weighted mean δ^13C values of long-chain n-alkanes (C27, C29 and C31 n-alkanes) from soils under dominant C4 or C3 vegetation, allowing us to reconstruct paleovegetation trends.  相似文献   

16.
Oryza sativa and O. latifolia belong to the AA and CCDD genomes of Oryza, respectively. In this study, interspecific hybrids of these species were obtained using the embryo rescue technique. Hybrid panicle traits, such as long awns, small grain, exoteric large purple stigma, grain shattering and dispersed panicles, resemble that of the paternal parent, O. latifolia, whereas there is obvious heterosis in such respects as plant height, tillering ability and vegetative vigor. Chromosome pairing and the genomic components of the hybrid were subsequently investigated using genomic in situ hybridization (GISH) and fluorescent in situ hybridization (FISH) analysis. Based on the mitotic metaphase chromosome numbers of the root tips investigated, the hybrid is a triploid with 36 chromosomes. The genomic constitution of the hybrid is ACD. In the meiotic metaphase Ⅰ of the hybrid pollen mother cell, poor chromosome pairing was identified and most of the chromosomes were univalent, which resulted in complete male sterility in the hybrid.  相似文献   

17.
NO (nitric oxide), known as a key signal molecule in plant, plays important roles in regulation of stomatal movement. In this study, microtubule dynamics and its possible mechanism in the NO signal pathway were investigated. The results were as follows: (i) In vivo stomatsl aperture assays revealed that both vinblastine (microtubule-disrupUng drug) and SNP (exogenous NO donor) prevented stomatsl opening in the light, and vinblastine even could enhance the inhibitory effect of SNP, whereas tsxol (a microtubule-stsbilizing agent) was able to reduce this effect; (ii) microtubules in the opening Arabi-dopsis guard cells expressing GFP:a-tubulin-6 (AtGFP:a-tubulin-6) were organized in parallel, straight and dense bundles, radiating from the ventral side to the dorsal side, and most of them were localized perpendicularly to the ventral wall; (iii) under the same environmental conditions, treated with SNP for 30 min, the radial arrays of microtubules in guard cells began to break down, twisted partially and be- came oblique or exhibited a random pattern; (iv) furthermore, the involvement of cytosolic Ca^2+ in this event was tested. Stomatal aperture assays revealed that BAPTA-AM (a chelator of Ca^2+) greatly suppressed the effect of NO on stomatal closure; however, it did not show the same function on stomatal closure induced by vinblastine. When BAPTA-AM was added to the SNP-pretreated solution, the SNP-induced disordered microtubulue cytoskeleton in guard cells underwent rearrangement in a time-dependent manner. After 30 min of treatment with BAPTA-AM, the cortical microtubules resumed the original radial distribution, almost the same as the control. All this indicates that NO may promote rearrangement of microtubule cytoskeleton via elevation of [Ca^2+]cyt (free Ca^2+ concentration in the cytoplasm), finally leading to stomatsl closure.  相似文献   

18.
According to the investigations of five loess sections in Shanxi Province, China, it was found that the concentrations of the major greenhouse gases CO2, CH4 and N2O in loess-paleosol sequences are generally high, even sometimes may be several times or scores of times higher than their atmospheric concentrations respectively. Although the CO2 concentration in the same loess section shows poor regularity among different layers, it increases slowly from north to south in space. The CH4 concentration in the layers under Malan Loess is much higher than that in the atmosphere, although it is not high in Malan Loess. Most of the δ13C values of CO2 in loess are -11.14‰—15.48‰ (relative to PDB standard). Analysis of carbon isotopic compositions of CO2 indicates that the main source of CO2 in loess section is decomposition of ‘stable’ organic matters by microbes. The δ13Cg of CO2 is a little heavier than organic source for exchanging carbon isotope with carbonate in loess. The abundant carbonate in loess not only makes the loess a huge carbon reservior but also adjusts  相似文献   

19.
The reconstruction of pCO2 in the tropic ocean is one of the most important issues to understand global climatic changes.In this study,the high-resolution stratigraphic analysis of core 17962 was conducted,which is Iocated in the southern South China Sea(SCS).The contents of sedimentary organic matter,the stable carbon isotopic composition of sedimentary organic matter,and the δ^13C values of black carbon and terrigenons n-alkanes were determined.And the δ^13Cwc value of carbon derived from aquatic was calculated.On the basis of δ^13Corg-pCO2equation proposed by Popp et al.(1989),we estimated the pCO2 in the Nansha area,SCS,since the last glaciation using δ^13Cwc instead of δ^13Corg.The results show that the average pCO2 was estimated at 240 ppm V during the last glaciation,and at 320ppm V in the Holocene.A comparison of surface sea pCO2 with the atmosphere CO2 recorded in the Vostok ice core,indicates that CO2 in surface water of the southern SCS could emit into atmosphere during the last 30ka.  相似文献   

20.
The catalyst [(2-ArN=C(Me))2C5H3N]FeCl2 (Ar = 2-C6H4(i-Pr)) with methylaluminoxane (MAO) as cocatalyst was intercalated between layers of montmorillonite (MMT) for ethylene oligomerization. Metallocene catalyst Me2Si(Ind)2ZrCl2 and MAO was then added to form a dual functional catalytic system. A PE/MMT nanocomposite was prepared by copolymerization of ethylene with α-olefins produced in situ from ethylene over the dual functional catalytic system. The catalytic system was of high polymeric activity. The resultant PE/MMT nanocomposites were stable and got increases in tensile strength and temperature of maximum weight loss (Tonset).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号