首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
柴达木盆地西部的侏罗系发育中、下侏罗统大、小煤沟组和上侏罗统采石岭组、红水沟组两套地层。中、下侏罗统以暗色含煤建造为主,暗色泥页岩发育;上侏罗统以氧化环境下沉积的红色碎屑岩建造为主,不具备生烃能力。区域地质调查及地震解释资料揭示中、下侏罗统湖相暗色泥页岩分布广、残留厚度大, 在清水沟和月牙山北分别发育了288m和256m厚的烃源岩。有机地球化学分析表明烃源岩有机碳含量平均达1.62%;有机质类型以Ⅱ2型为主,部分为Ⅲ型;正处于成熟阶段的生、排烃高峰期,具有较强的生烃能力。该区生储盖匹配良好,圈闭发育,具有较好的石油地质条件和良好的油气勘探前景。  相似文献   

2.
塔里木盆地轮南周缘地区奥陶系发育良好,主要由海相碳酸盐岩和陆源碎屑岩组成。沉积相分析表明,中下奥陶统鹰山组为区域性的开阔台地相台内滩夹滩间海沉积,中奥陶统一间房组为区域性的海水变浅的开阔台地浅滩夹点礁沉积,上奥陶统吐木休克组发育沉没台地-斜坡相,上奥陶统良里塔格组是在晚奥陶世海侵背景下碳酸盐岩台地边缘-斜坡相的沉积产物。研究区奥陶系发育两期礁滩体,第一期礁滩体发育于中奥陶统一间房组,第二期礁滩体发育于上奥陶统良里塔格组上部,两期礁滩体的发育环境和分布范围各具特色。奥陶系碳酸盐岩沉积相带总体上呈近南北向展布,各相带在近东西方向上错落有序分布,并且随时间发生明显的侧向迁移。  相似文献   

3.
Figuring out whether the sedimentary provenance regions of the thick deep-water turbidite systems deposited during Middle–Upper Ordovician in South Quruqtagh are the intracontinental uplifts or the peripheral orogenic belts is of great significance for us to understand the tectono-sedimentary nature of the northeastern Tarim Basin and basin-range coupling processes in the middle Paleozoic.This paper reports the in situ LA-ICP-MS U–Pb ages and Hf isotope data on detrital zircons from two Middle–Upper Ordovician sandstone samples which were collected from the Charchag Formation and the Zatupo Formation in South Quruqtagh,respectively.The results show that the studied two samples have extremely similar U–Pb age patterns and Hf isotopic compositions,reflecting multiphase tectonothermal events with age groups of 527–694,713–870 Ma(peaking at 760 Ma),904–1,090,1,787–2,094 Ma(peaking at 1,975 Ma)and 2,419–2,517 Ma.Combining previous studies,the presence of age groups of 713–1,090 and1,787–2,094 Ma,respectively,demonstrates that Tarim had ever been a part of Rodinia and Columbia supercontinent.Moreover,98%of 713–870 Ma detrital zircons are characterized by negative e Hf(t)values ranging from-38.07 to-0.61,which are highly consistent with those of Neoproterozoic granites from the Quruqtagh area.No Early Paleozoic ages(*470–500 Ma)signifying subduction or collision events in Altyn Tagh were detected in the two samples,indicating that the Middle–Late Ordovician sediments in South Quruqtagh and northern Mangar depression were mainly derived from intracontinental uplifts,i.e.,the North Quruqtagh uplift or the Tabei paleo-uplift,rather than the Altyn Tagh.In conjunction with regional sedimentary-tectonic background and previous studies,we proposed preliminarily that the northeastern Tarim remained as a passive continental margin in Late Ordovician and changed into an active-continental margin in Silurian due to the southward subduction of the South-Tianshan Ocean.  相似文献   

4.
The Cratonic Area of the Tarim Basin is lo-cated in the central part of the basin, developing primarilywith Cambrian marine source rocks and secondly Middle toUpper Ordovician marine and Carboniferous-Permiantransitional facies source rocks. The source rocks werematured in the changeable period and space, formingmultiple hydrocarbon generating centers during the periods.The Cratonic Area experienced multiple tectonic orogenies,forming several palaeouplifts. The matching conditionbetween effective hydrocarbon generating centers and thepalaeouplifts in various periods is the main control factor forthe formation and distribution of hydrocarbon reservoirs.The palaeouplifts have experienced multiple hydrocar-bon-filling phases, several periods of modifications and evenbreakdown. The palaeouplifts and the adjacent slopesaround the effective hydrocarbon generating center composethe most favorable places for hydrocarbon accumulation.The hydrocarbon phase is related with the evolution of thehydrocarbon generating center. In the Tarim Basin'sCratonic Area, reservoirs were mostly formed during lateHercynian. The originally formed hydrocarbon reservoirswhich are adjacent to source kitchens and in the goodpreservation condition are the most favorable prospectingtargets. Hydrocarbon is richly accumulated under theregional caprock, surrounding the faulted trends, and overand below the unconformity surfaces. Reservoirs in theCarboniferous sandstone, Ordovician karstic weatheredcrust and carbonate rock inside the buried hill compose themain intervals for hydrocarbon accumulation. Carboni-ferous and Silurian sandstone pinchout reservoirs andcarbonate lithologic reservoirs with rich fractures and poresare the main targets for further prospecting.  相似文献   

5.
通过对鄂尔多斯盆地西北部奥陶系烃源岩、储集层及天然气展布规律的研究,探讨其天然气成藏规律。奥陶系烃源岩主要分布在上统乌拉力克组和拉什仲组,以海相泥岩为主;储层主要发育在中统克里摩里组和桌子山组,依据岩石类型、孔隙结构,可分为岩溶孔洞型储层和白云岩晶间溶孔型储层;天然气藏的形成受烃源岩、储层和圈闭的"三元"主控,具有有效烃源岩控制天然气区域分布、优质储层控制天然气聚集带展布、有效圈闭控制气藏分布特征。鄂尔多斯盆地西北部的西侧气藏主要为油型气,东侧主要为煤型气,均为上生下储的成藏模式。  相似文献   

6.
Some important information on hydrocarbon generation, inclusion and migration in highly-matured carbonates of lower Palaeozoic age from the Ordos Basin and Tarim Basin hasbeen analyzed by a newly-combined laser-induced fluorescence microscope (LFM) designed by our laboratory. The following information has been obtained from the lower Ordovician lamellar carbonates with equivalent vitrinite reflectance (Ro) as high as 1.6%-1.7% and residual TOC of 0.14%-0.35% from the Ordos Basin: wide occurrences of oil and source macerals with strong fluorescence, including G. Prisca alginite, lamalginite, telalginite and algae-detrinite; fluorescing asphalt among mineral crystals; some groundmass and spheroid-like reservoir bitumen with high maturation levels in the pores of dolomites. Various kinds of fluorescing organic inclusions and asphalt have been found in the carbonates, calcareous shales and silt-shales with high maturation levels from the Cambrian-Ordovician strata in the Tarim Basin. All this helps us find and evaluate significant and excellent source rocks for large-and middle-scale gas fields. The net and micro-net systems for hydrocarbon generation, expulsion and migration in carbonates have been revealed by the highly-powered laser-induced fluorescence microscopy.  相似文献   

7.
系统评价了塔里木盆地塔中地区的烃源岩,采用盆地数值模拟方法定量计算了塔中地区的生、排烃数量。研究表明,塔中地区的油气运移聚集主要发生于早古生代和晚古生代的几次构造运动期间,聚集的油气曾遭受过严重的破坏,塔中地区的构造演化对塔中地区的油气聚集起着至关重要的作用。寒武系和下奥陶统烃源岩生排油时间较早,因此对现今已发现的油藏贡献不大,而晚排出的天然气有利于聚集;中上奥陶统烃源岩生排油延续时间较长,对塔中的油气聚集有实质性的贡献。  相似文献   

8.
The Williston Basin is a significant petroleum province, containing oil production zones that include the Middle Cambrian to Lower Ordovician, Upper Ordovician, Middle Devonian, Upper Devonian and Mississippian and within the Jurassic and Cretaceous. The oils of the Williston Basin exhibit a wide range of geochemical characteristics defined as "oil families", although the geochemical signature of the Cambrian Deadwood Formation and Lower Ordovician Winnipeg reservoired oils does not match any "oil family". Despite their close stratigraphic proximity, it is evident that the oils of the Lower Palaeozoic within the Williston Basin are distinct. This suggests the presence of a new "oil family" within the Williston Basin. Diagnostic geochemical signatures occur in the gasoline range chromatograms, within saturate fraction gas chromatograms and biomarker fingerprints. However, some of the established criteria and cross-plots that are currently used to segregate oils into distinct genetic families within the basin do not always meet with success, particularly when applied to the Lower Palaeozoic oils of the Deadwood and Winnipeg Formation.  相似文献   

9.
The Williston Basin is a significant petroleum province, containing oil production zones that include the Middle Cambrian to Lower ()rdovician, Upper Ordovician, Middle Devonian, Upper Devonian and Mississippian and within the Jurassic and Cretaceous. The oils of the Williston Basin exhibit a wide range of geochemical characteristics defined as “oil families“, although the geochemical signature of the Cambrian Deadwood Formation and Lower Ordovician Winnipeg reservoired oils does not match any “oil family“. Despite their close stratigraphic proximity, it is evident that the oils of the/rower Palaeozoic within the Williston Basin are distinct. This suggests the presence of a new “oil family“ within the Williston Basin. Diagnostic geochemical signatures occur in the gasoline range chromatograms, within saturate fraction gas chromatograms and biomarker fingerprints. However, some of the established criteria and cross-plots that are currently used to segregate oils into distinct genetic families within the basin do not always meet with success, particularly when applied to the Lower Palaeozoic oils of the Deadwood and Winnipeg Formation.  相似文献   

10.
塔里木盆地古隆起的形成和油气控制   总被引:4,自引:0,他引:4  
塔北、巴楚和塔中隆起是塔里木盆地不同世代盆地原型结构复合的产物,对油气的分布起着重要的控制作用.其中,塔中、塔北隆起,为海西期油气运聚的主要指向区,具有良好的储盖条件,是油气重要的聚集场所.中新生代昆仑山崛起,塔西南挤榨前渊形成,致使克拉通内拗陷转化并反转形成巴楚隆起,与塔西南前渊迭加的古生代源岩构成统一的成藏系统.  相似文献   

11.
The issue of source of oil/gas in the platform basin area in Tarim Basin has been debated for a long time, and the debate is focused on whether the marine oil/gas resources that have been discovered in the basin were originated from hydrocarbon source rocks in the Cambrian-Lower Ordovician or in the Mid-Upper Ordovician. In this paper a summary was made in regard to the major points and supporting data by the predecessors, and a discussion was conducted toward the core issues related to the study on the oil source in the Tarim Basin area, such as choice of correlation parameters, influence of maturation and physical differentiation on oil source correlation parameters, and geological and geochemical significance of these relevant correlation indices. It is quite probable that different interpretation results could arise from the oil source correlation due to choice of parameters severely affected by the thermal maturation and physical differentiation effect, and insisted that only those parameters that come with clearly defined geochemical significance and are less affected by thermal maturation and variations occurring during secondary evolution process are valid ones. The marine crude in Tarim Basin covers contributions that were originated from two sets of hydrocarbon source rocks as mentioned above but dominated by the one from the Mid-Upper Ordovician hydrocarbon source rocks. Here oil of mixed sources occurs extensively, and crude from Cambrian sources was also discovered. It is suggested that for further study on the origin of marine crudes in Tarim Basin, the parameters used for correlation of oil sources shall be optimized, and a comprehensive set of geological and geochemical methods shall be adopted for this purpose.  相似文献   

12.
塔里木盆地石油地质基本特征   总被引:2,自引:0,他引:2  
全面系统地总结并提出塔里木盆地10大石油地质基本特征:(1)塔里木盆地为一古生界克拉通盆地与中新生界前陆盆地组成的大型叠合复合型盆地;(2)塔里木盆地经历了多期构造运动及多个演化发展阶段;(3)塔里木盆地主要有寒武—奥陶系、石炭—二叠系,三叠—侏罗系3套烃源岩;(4)塔里木盆地发育多套深埋优质储层及5套良好储盖组合;(5)塔里木盆地油气水性质复杂、油气藏类型丰富多样;(6)塔里木盆地富油又富气,天然气藏以凝析气藏为主;(7)塔里木盆地既有陆相油气,又有海相油气,已发现的石油以海相成因为主,天然气以陆相成因为主;(8)塔里木盆地已发现的油气藏以中小型为主,具有埋深大、丰度低、产能高的特点;(9)塔里木盆地具有多个成油气系统、多期成藏及油气多次运移再分配的特点;(10)塔里木盆地油气分布十分复杂,油气聚集受多重因素制约  相似文献   

13.
新疆三塘湖盆地烃源岩特征   总被引:5,自引:0,他引:5  
新疆三塘湖盆地主要有三套烃源岩:中生界上三叠统和中下侏罗统煤系烃源岩、古生界上二叠统湖相低熟烃源岩和古生界下二叠统和石炭系湖相成熟烃源岩.烃源岩在马朗凹陷、条湖凹陷和汉水泉凹陷均有分布,岩性主要为暗色泥岩、煤和碳质泥岩.最有利的烃源岩为马朗凹陷中有机质丰度高、类型好、油气生成量大且碳酸盐岩含量高的上二叠统芦草沟组烃源岩.  相似文献   

14.
There are abundant natural gas resources in Chinese marine sedimentary basin. The exploration hot shots of natural gas are the Palaeozoic marine strata here in recent years, and several large scale gas fields have been discovered. Chinese Palaeozoic high-post matured and coal measure hydrocarbon source rocks are mainly prone to gas generation in the present. This research considered that gas source rocks and TSR are the key cause of gas enrichment of marine strata. High-quality argillaceous and coal measure hydrocarbon rocks are distributed widely in the Palaeozoic marine strata, which have been in highly matured phase in the present. The argillaceous source rock generally contains various sulfates that could accelerate crude oil cracking to gas for TSR occurrence, and coal measure source rock mainly generates gas, so Chinese marine basin gives priority to accumulating gas. Marine strata have not founded oil reservoirs in the Sichuan Basin and Ordos Basin, and they consist mainly of dry gas. Marine natural gases are the mixed gases of oil cracking gas and coal-formed gas in a general way, oil cracking gases contain usually some H2S and CO2. Hydrocarbon carbon isotopes are very complicated, and methane and ethane isotopic values bear apparent reversal caused by thermal evolution and mixing among different genetic types of natural gas. Coal-formed gases are the main component of Chinese marine natural gas. The Upper Permian of the Sichuan Basin and the Carboniferous-Permian of the Ordos Basin coal measure hydrocarbon source rock present large hydrocarbon generation potential, which are the prospecting highlight of marine natural gas hereafter. Oil cracking gas exploration will be paid much attention to in the Tarim Basin because of the lack of coal measure hydrocarbon source rock.  相似文献   

15.
The present paper deals with a tectonic event of Late Ordovician age affecting three blocks of China,i.e.South China,North China and Tarim.In the North China and the Tarim platforms,as well as their marginal belts,there was a regional uplift during the early Katian Stage of the Ordovician.The uplift was indicated by the unconformities between the Ordovician successions and overlying late Paleozoic strata.New biostratigraphic studies of conodonts and graptolites from many sections at Longxian and Yaoxian,North China shows that the youngest Ordovician strata are of the early Katian age corresponding to graptolite Diplacanthograptus spiniferus Biozone.The same level has been recognized to represent the uppermost Ordovician in the platform area of Tarim,whereas in the marginal belt the top boundary of the Ordovician is slightly younger,corresponding to the graptolite Dicellograptus complanatus Biozone.Thus,the regional uplift in North China and Tarim is shown by the disconformity between the early Katian strata and Late Paleozoic strata,the onset coinciding with that of the Kwangsian Orogeny in South China.The designation Kwangsian Orogeny later fell into disuse and was replaced by the term Caledonian Orogeny.However,in terms of geographic location,tectonic nature,and the timing of activity,the Caledonian Orogeny differs significantly from the orogenic event in South China,and the continued use of this term in South China is inappropriate and misleading.  相似文献   

16.
塔里木盆地大中型油气田形成及分布规律   总被引:7,自引:2,他引:5  
目的 探讨塔里木盆地油气藏形成及分布规律,为油气田勘探部署提供依据。方法 运用石油地质综合研究方法,探讨了区域构造背景,有效烃源岩分布及其成熟度、储盖组合、后期构造变动等对塔里木盆地大中型油气田形成及分布的控制作用。结果 塔里木盆地油气分布十分复杂,油气藏形成及分布受多重因素控制;早期形成、长期继承发育的大型稳定古隆起及其斜坡以及前陆逆冲带第2,3排构造分别是大中型油气田形成的最有利地区;古隆起控油、斜坡富集以及隆起高部位油气易发生调整、斜坡部位有利于保存,是克拉通区油气藏形成和分布的重要特点;已发现的油气藏具有多期成藏、晚期调整的特点,早期形成的原生油气藏后期特别是晚喜山期普遍受到了调整改造,以克拉通区海相油气藏最为突出;保存条件对塔里木盆地油气藏形成与分布具有重要控制作用,特别是优质区域盖层的存在,是大中型油气田形成和保存的关键。结论 继承性古隆起与隐伏前陆逆冲带是塔里木克拉通区与前陆区寻找大中型油气田的最有利地区。  相似文献   

17.
Molecular fossils and oil-source rock correlations in Tarim Basin, NW China   总被引:2,自引:0,他引:2  
The distribution of "molecular fossils" (bio-markers) of steroid compounds in extracts from some spe-cific geologic age in the Tarim Basin have been analyzed andare used as the fingerprints for the oil-source rock correla-tion. Having been affected by maturation, migration, phasefractionation and biodegradation, not any molecular fossilsrelated to source and environment can be used as the finger-prints for oil-source rock correlation. Some special bio-markers widely existed in the extracts from Cambrian andOrdovician rocks in the Tarim Basin and showed obviousdifference in each stratum, including dinosteranes (C30),4-methyl-24-ethyl-cholestanes (C30) and their aromatizedsteroids, C24-norcholestanes and C28 steranes originated fromdinoflagellates and diatom. Few oils such as the heavy oildrilled in the Cambrian reservoir from Tadong 2 well (TD2)correlated well with the extracts from the Cambrian. Theamazing similarity of the relative contents of these com-pounds between the marine oils produced in Tazhong andTabei uplifts and the extracts from the Upper Ordoviciansuggests that the Middle-Upper Ordovician is the very likelymain source for the marine oils.  相似文献   

18.
中国南方大地构造演化及其对油气的控制   总被引:28,自引:0,他引:28  
按照板块构造理论及活动论、阶段论的思想,大致以中晚三叠世为界,将中国南方自震旦纪以来大地构造演化历史划分成海相盆地演化阶段(Z-T2)及陆相盆地演化阶级(T3-Q)两大阶段;又可进一步细分为扬子克拉通及其周缘裂谷盆地(Z-1q)、裂谷-克拉通-被动大陆边缘盆地(1c-O1)、被动陆缘-克拉通-前陆盆地(O2-S)、加里东运动(S末)、裂谷-克拉通盆地(D-T1)、克拉通残留海盆-弧后(浊积)盆地(T2)、印支运动(T2-T3)、华北-华南板块焊合、古特提斯封闭与前陆盆地的形成(T3-J2)、压扭背景下的改造作用及拉分盆地的形成(J3-K1)、伸展-裂陷盆地的形成(K2-E)、喜马拉雅运动(E末-N初)及披盖性构造层的形成(N-Q)12个阶段。特别是对南方自中晚三叠世以来的大地构造演化及其对现存油气的控制作用进行了系统研究,提出了晚侏罗世-早白垩世燕山运动对南方中生界、古生界原生油气藏的保存与破坏起到了决定性作用及燕山、喜马拉雅运动控制了现今南方原生、次生及再生烃(二次生烃)油气藏分布的新观点。  相似文献   

19.
鄂尔多斯盆地中部奥陶系风化壳天然气的运移特征   总被引:1,自引:0,他引:1  
鄂尔多斯盆地中部奥陶系风化壳天然气运移是迄今研究比较薄弱的重要问题 .在前人工作的基础上 ,依据实际的地质和地球化学资料 ,分析了鄂尔多斯盆地中部奥陶系风化壳天然气的运移特征 .研究认为 ,以靖边为中心的中部气区是天然气运移的有利区 .奥陶系风化壳天然气的运移较为复杂 ,既有奥陶系来源天然气的侧向运移 ,又有上覆石炭—二叠系来源天然气的穿层运移 .这与研究区的构造演化、古流体等研究结果相吻合  相似文献   

20.
通过平衡剖面技术复原古构造演化 ,并结合区域构造分析 ,可将孔西构造带的发育过程大致分为三个构造变形阶段 :晚三叠世末期为挤压褶皱变形期 ;晚三叠世沉积后至侏罗系沉积前为逆冲构造变形期 ;早—中侏罗世为逆冲构造“轻度”渐进变形期。晚侏罗世以后 ,区域构造作用发生反转。随着晚侏罗—早白垩世、早第三纪裂陷盆地的发育 ,孔西构造带作为潜山构造被掩埋。裂陷盆地时期的伸展构造对孔西构造带前第三系的逆冲构造基本上没有大的改造  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号