首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Smith DJ  Whitehouse I 《Nature》2012,483(7390):434-438
Fifty per cent of the genome is discontinuously replicated on the lagging strand as Okazaki fragments. Eukaryotic Okazaki fragments remain poorly characterized and, because nucleosomes are rapidly deposited on nascent DNA, Okazaki fragment processing and nucleosome assembly potentially affect one another. Here we show that ligation-competent Okazaki fragments in Saccharomyces cerevisiae are sized according to the nucleosome repeat. Using deep sequencing, we demonstrate that ligation junctions preferentially occur near nucleosome midpoints rather than in internucleosomal linker regions. Disrupting chromatin assembly or lagging-strand polymerase processivity affects both the size and the distribution of Okazaki fragments, suggesting a role for nascent chromatin, assembled immediately after the passage of the replication fork, in the termination of Okazaki fragment synthesis. Our studies represent the first high-resolution analysis--to our knowledge--of eukaryotic Okazaki fragments in vivo, and reveal the interconnection between lagging-strand synthesis and chromatin assembly.  相似文献   

2.
核小体是构成真核生物染色质的基本结构单位,体内研究核小体及染色质结构受到诸多因素限制,体外重构核小体结构是研究与核小体及染色质结构相关课题的一种重要的方法手段.实验将ES1,CS1以及601DNA序列克隆到载体中,通过PCR大量扩增回收得到目的DNA条带,表达纯化了4种组蛋白且装配成组蛋白八聚体,在盐透析的条件下组装形成核小体结构,利用EB染色以及Biotin标记的方法分析检测了形成核小体的效率.结果显示,在盐透析的条件下,可以有效的组装形成核小体结构,而且随着组蛋白八聚体与DNA的比例增加,核小体的形成效率显著提高.本实验为核小体定位、染色质重塑及组蛋白变体等表观遗传学以及结构生物学领域的研究奠定一定的基础.  相似文献   

3.
Fyodorov DV  Kadonaga JT 《Nature》2002,418(6900):897-900
The assembly of DNA into chromatin is a critical step in the replication and repair of the eukaryotic genome. It has been known for nearly 20 years that chromatin assembly is an ATP-dependent process. ATP-dependent chromatin-assembly factor (ACF) uses the energy of ATP hydrolysis for the deposition of histones into periodic nucleosome arrays, and the ISWI subunit of ACF is an ATPase that is related to helicases. Here we show that ACF becomes committed to the DNA template upon initiation of chromatin assembly. We also observed that ACF assembles nucleosomes in localized arrays, rather than randomly distributing them. By using a purified ACF-dependent system for chromatin assembly, we found that ACF hydrolyses about 2#150;4 molecules of ATP per base pair in the assembly of nucleosomes. This level of ATP hydrolysis is similar to that used by DNA helicases for the unwinding of DNA. These results suggest that a tracking mechanism exists in which ACF assembles chromatin as an ATP-driven DNA-translocating motor. Moreover, this proposed mechanism for ACF may be relevant to the function of other chromatin-remodelling factors that contain ISWI subunits.  相似文献   

4.
Valouev A  Johnson SM  Boyd SD  Smith CL  Fire AZ  Sidow A 《Nature》2011,474(7352):516-520
Nucleosomes are the basic packaging units of chromatin, modulating accessibility of regulatory proteins to DNA and thus influencing eukaryotic gene regulation. Elaborate chromatin remodelling mechanisms have evolved that govern nucleosome organization at promoters, regulatory elements, and other functional regions in the genome. Analyses of chromatin landscape have uncovered a variety of mechanisms, including DNA sequence preferences, that can influence nucleosome positions. To identify major determinants of nucleosome organization in the human genome, we used deep sequencing to map nucleosome positions in three primary human cell types and in vitro. A majority of the genome showed substantial flexibility of nucleosome positions, whereas a small fraction showed reproducibly positioned nucleosomes. Certain sites that position in vitro can anchor the formation of nucleosomal arrays that have cell type-specific spacing in vivo. Our results unveil an interplay of sequence-based nucleosome preferences and non-nucleosomal factors in determining nucleosome organization within mammalian cells.  相似文献   

5.
R A Laskey  B M Honda  A D Mills  J T Finch 《Nature》1978,275(5679):416-420
The nucleosome subunits of chromatin are assembled from histones and DNA by an acidic protein which binds histones. The nucleosome assembly protein has been identified and purified from eggs of Xenopus laevis.  相似文献   

6.
Site-specific recognition of DNA in eukaryotic organisms depends on the arrangement of nucleosomes in chromatin. In the yeast Saccharomyces cerevisiae, ISW1a and related chromatin remodelling factors are implicated in establishing the nucleosome repeat during replication and altering nucleosome position to affect gene activity. Here we have solved the crystal structures of S. cerevisiae ISW1a lacking its ATPase domain both alone and with DNA bound at resolutions of 3.25?? and 3.60??, respectively, and we have visualized two different nucleosome-containing remodelling complexes using cryo-electron microscopy. The composite X-ray and electron microscopy structures combined with site-directed photocrosslinking analyses of these complexes suggest that ISW1a uses a dinucleosome substrate for chromatin remodelling. Results from a remodelling assay corroborate the dinucleosome model. We show how a chromatin remodelling factor could set the spacing between two adjacent nucleosomes acting as a 'protein ruler'.  相似文献   

7.
8.
The fundamental unit of eukaryotic chromatin, the nucleosome, consists of genomic DNA wrapped around the conserved histone proteins H3, H2B, H2A and H4, all of which are variously modified at their amino- and carboxy-terminal tails to influence the dynamics of chromatin structure and function -- for example, conjugation of histone H2B with ubiquitin controls the outcome of methylation at a specific lysine residue (Lys 4) on histone H3, which regulates gene silencing in the yeast Saccharomyces cerevisiae. Here we show that ubiquitination of H2B is also necessary for the methylation of Lys 79 in H3, the only modification known to occur away from the histone tails, but that not all methylated lysines in H3 are regulated by this 'trans-histone' pathway because the methylation of Lys 36 in H3 is unaffected. Given that gene silencing is regulated by the methylation of Lys 4 and Lys 79 in histone H3, we suggest that H2B ubiquitination acts as a master switch that controls the site-selective histone methylation patterns responsible for this silencing.  相似文献   

9.
10.
Schalch T  Duda S  Sargent DF  Richmond TJ 《Nature》2005,436(7047):138-141
  相似文献   

11.
F Thoma  R T Simpson 《Nature》1985,315(6016):250-252
The structure of the nucleosome core particle, the basic structural subunit of chromatin, is well known. Although nucleosomes often appear to be positioned randomly with respect to DNA sequences, in some cases they seem to occupy precisely defined positions on the DNA. The yeast plasmid TRP1ARS1 contains three precisely positioned, stable nucleosomes, I, II and III, which are flanked by nuclease-sensitive regions. Our aim in the present study was to determine whether the positions of these three nucleosomes relate to (1) protein-DNA interactions; (2) the limited space between nuclease-sensitive regions, which is just long enough to accommodate three yeast nucleosomes (that is, boundary conditions); or (3) proximity to the putative origin of replication in one of the nuclease-sensitive regions. We have tested these alternatives by analysing the positions of nucleosomes after insertion of various lengths of DNA into this region and assembly of chromatin in vivo. Our results suggest that specific protein-DNA interactions are the most likely determinants of these nucleosome positions.  相似文献   

12.
Tsukuda T  Fleming AB  Nickoloff JA  Osley MA 《Nature》2005,438(7066):379-383
The repair of DNA double-strand breaks (DSBs) is crucial for maintaining genome stability. Eukaryotic cells repair DSBs by both non-homologous end joining and homologous recombination. How chromatin structure is altered in response to DSBs and how such alterations influence DSB repair processes are important issues. In vertebrates, phosphorylation of the histone variant H2A.X occurs rapidly after DSB formation, spreads over megabase chromatin domains, and is required for stable accumulation of repair proteins at damage foci. In Saccharomyces cerevisiae, phosphorylation of the two principal H2A species is also signalled by DSB formation, which spreads approximately 40 kb in either direction from the DSB. Here we show that near a DSB phosphorylation of H2A is followed by loss of histones H2B and H3 and increased sensitivity of chromatin to digestion by micrococcal nuclease; however, phosphorylation of H2A and nucleosome loss occur independently. The DNA damage sensor MRX is required for histone loss, which also depends on INO80, a nucleosome remodelling complex. The repair protein Rad51 (ref. 6) shows delayed recruitment to DSBs in the absence of histone loss, suggesting that MRX-dependent nucleosome remodelling regulates the accessibility of factors directly involved in DNA repair by homologous recombination. Thus, MRX may regulate two pathways of chromatin changes: nucleosome displacement for efficient recruitment of homologous recombination proteins; and phosphorylation of H2A, which modulates checkpoint responses to DNA damage.  相似文献   

13.
Loppin B  Bonnefoy E  Anselme C  Laurençon A  Karr TL  Couble P 《Nature》2005,437(7063):1386-1390
In sexually reproducing animals, a crucial step in zygote formation is the decondensation of the fertilizing sperm nucleus into a DNA replication-competent male pronucleus. Genome-wide nucleosome assembly on paternal DNA implies the replacement of sperm chromosomal proteins, such as protamines, by maternally provided histones. This fundamental process is specifically impaired in sésame (ssm), a unique Drosophila maternal effect mutant that prevents male pronucleus formation. Here we show that ssm is a point mutation in the Hira gene, thus demonstrating that the histone chaperone protein HIRA is required for nucleosome assembly during sperm nucleus decondensation. In vertebrates, HIRA has recently been shown to be critical for a nucleosome assembly pathway independent of DNA synthesis that specifically involves the H3.3 histone variant. We also show that nucleosomes containing H3.3, and not H3, are specifically assembled in paternal Drosophila chromatin before the first round of DNA replication. The exclusive marking of paternal chromosomes with H3.3 represents a primary epigenetic distinction between parental genomes in the zygote, and underlines an important consequence of the critical and highly specialized function of HIRA at fertilization.  相似文献   

14.
A chromatin remodelling complex involved in transcription and DNA processing   总被引:44,自引:0,他引:44  
Shen X  Mizuguchi G  Hamiche A  Wu C 《Nature》2000,406(6795):541-544
  相似文献   

15.
16.
Maiorano D  Moreau J  Méchali M 《Nature》2000,404(6778):622-625
In eukaryotic cells, chromosomal DNA replication begins with the formation of pre-replication complexes at replication origins. Formation and maintenance of pre-replication complexes is dependent upon CDC6 (ref. 1), a protein which allows assembly of MCM2-7 proteins, which are putative replicative helicases. The functional assembly of MCM proteins into chromatin corresponds to replication licensing. Removal of these proteins from chromatin in S phase is crucial in origins firing regulation. We have identified a protein that is required for the assembly of pre-replication complexes, in a screen for maternally expressed genes in Xenopus. This factor (XCDT1) is a relative of fission yeast cdt1, a protein proposed to function in DNA replication, and is the first to be identified in vertebrates. Here we show, using Xenopus in vitro systems, that XCDT1 is required for chromosomal DNA replication. XCDT1 associates with pre-replicative chromatin in a manner dependent on ORC protein and is removed from chromatin at the time of initiation of DNA synthesis. Immunodepletion and reconstitution experiments show that XCDT1 is required to load MCM2-7 proteins onto pre-replicative chromatin. These findings indicate that XCDT1 is an essential component of the system that regulates origins firing during S phase.  相似文献   

17.
18.
In eukaryotes, accurate chromosome segregation during mitosis and meiosis is coordinated by kinetochores, which are unique chromosomal sites for microtubule attachment. Centromeres specify the kinetochore formation sites on individual chromosomes, and are epigenetically marked by the assembly of nucleosomes containing the centromere-specific histone H3 variant, CENP-A. Although the underlying mechanism is unclear, centromere inheritance is probably dictated by the architecture of the centromeric nucleosome. Here we report the crystal structure of the human centromeric nucleosome containing CENP-A and its cognate α-satellite DNA derivative (147 base pairs). In the human CENP-A nucleosome, the DNA is wrapped around the histone octamer, consisting of two each of histones H2A, H2B, H4 and CENP-A, in a left-handed orientation. However, unlike the canonical H3 nucleosome, only the central 121 base pairs of the DNA are visible. The thirteen base pairs from both ends of the DNA are invisible in the crystal structure, and the αN helix of CENP-A is shorter than that of H3, which is known to be important for the orientation of the DNA ends in the canonical H3 nucleosome. A structural comparison of the CENP-A and H3 nucleosomes revealed that CENP-A contains two extra amino acid residues (Arg?80 and Gly?81) in the loop 1 region, which is completely exposed to the solvent. Mutations of the CENP-A loop 1 residues reduced CENP-A retention at the centromeres in human cells. Therefore, the CENP-A loop 1 may function in stabilizing the centromeric chromatin containing CENP-A, possibly by providing a binding site for trans-acting factors. The structure provides the first atomic-resolution picture of the centromere-specific nucleosome.  相似文献   

19.
A role for Saccharomyces cerevisiae histone H2A in DNA repair   总被引:11,自引:0,他引:11  
Downs JA  Lowndes NF  Jackson SP 《Nature》2000,408(6815):1001-1004
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号