首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
具有一定精度的近似解析解可以将船舶横摇运动特征直接与船体参数相联系,便于分析船体参数对横摇运动及稳定性的影响.文中考虑阻尼力矩和恢复力矩的非线性建立了船舶在规则波中的横摇运动方程;为了克服弱非线性的局限性,采用改进的Lindstedt-Poincare(MLP)方法对横摇运动方程进行摄动求解,经细致推导得到精确至二阶的解析解(静水中)和精确至一阶的解析解(波浪中).最后对一目标船分别采用MLP和数值算法进行求解,验证了近似解析解的正确性.  相似文献   

2.
目标检测是遥感图像处理领域的一项重要技术,遥感图像目标种类繁多且存在目标物体难以被检测.提出把YOLOv5算法应用到遥感图像目标检测的方法,首先选择YOLOv5x来构建网络模型,再通过Mosaic数据增强对样本集进行预处理和自适应锚框筛选方法确定锚框大小,然后切片卷积操作得到原始特征图,将原始特征图送入主干网络进行特征融合得到最优权重,最后采用GIOU Loss做边界框的损失函数和非极大值抑制目标框的筛选,对遥感图像进行目标检测.在公开的10类地理空间物体(NWPU-VHR 10)数据集进行了检测实验,以评估所提出模型的目标检测性能.对比实验表明,本文的模型mAP达到了0.9239,与使用相同数据集的模型中的最佳结果进行比较,mAP提升了1.78%,该方法可以提高遥感图像目标检测精度.  相似文献   

3.
当前船舶焊缝缺陷检测主要是通过人工目视的手段检查焊缝的射线探伤图像进行的,存在耗时长、工作量大、效率低的问题,为此提出了一种基于改进YOLOv5模型的船舶焊缝缺陷检测方法.首先对1 152张船舶焊缝射线图像进行标注,建立船舶焊缝射线图像数据集;然后根据船舶焊缝缺陷几何尺寸小、特征不明显的特点,对YOLOv5模型进行改进.通过对图像进行正弦灰度变换,提高缺陷处的对比度.加入卷积注意力模块(CBAM),增大感兴趣区域的权重.增加检测尺度,提高对微小目标的检测精度.计算对比检测结果表明,使用改进的YOLOv5模型对船舶焊缝缺陷进行识别,使精确度从95.3%提高到98.4%,召回率从77.5%提高到77.9%,交并比为0.5时的平均精确度从81.5%提高到84.2%,证明该方法可以有效地改进船舶焊缝缺陷检测的效果.  相似文献   

4.
该文基于优化的检测网络和多层感知(multi-layerperception,MLP)特征,提出一种可以更加准确地检测出错误发音类型的方法。首先,从第二语言学习的语音库中提取出基本的发音规则以及组合的发音规则,并相应地计算它们发生的先验概率,再将这些具有先验概率的规则用于构建基于多发音的扩展检测网络。然后在检测过程中,引入基于发音特征的MLP特征来描述发音概率,替代了传统的语音声学特征。最后使用基于MLP特征的GMM-HMM框架从检测网络中识别出最可能的发音音素串。实验表明:该方法将音素识别正确率提高了3.11%,错误类型准确率提高了7.42%。  相似文献   

5.
6.
以舰船为研究对象,研究高分辨遥感图像的多尺度多目标检测中的关键技术,主要解决多尺度多目标识别和细粒度分类准确率低等问题.在目标定位方面,利用特征金字塔深度网络定位多目标区域,创建一个在所有尺度上均具有语义信息的特征金字塔,有效解决多尺度多目标数据定位准确率低这一关键问题;在目标识别方面,利用共享CNN网络重建输入图像、优化多任务损失函数提取细粒度分类目标结构特征,提高细分目标识别准确率.与GoogLeNet、Faster R-CNN和Yolo三种目标检测算法对比实验表明,利用特征金字塔和重建输入图像可有效检测多目标多尺度的细粒度船舶对象,漏检率为1.5%,细粒度分类识别平均准确率为92.67%.  相似文献   

7.
船舶智能化的发展对船舶视觉感知系统实时目标检测能力提出了更高要求,YOLOv5作为YOLO(You Only Look Once)系列算法的最新成果,以良好的速度和精度被广泛应用于海上目标检测.但在实际海上航行中往往伴随着多变的自然条件和复杂的活动场景,这使其在复杂海域中小目标检测能力和多目标分类效果并不理想.因此,为提升YOLOv5在复杂海域中目标检测能力,本文提出多路径聚合网络结构(MPANet).在自底向上特征传递过程中融合多层次特征信息以增强多尺度定位能力,同时结合SimAM注意力模块和Transformer结构增强高阶特征语义信息.在自定义数据集中实验结果表明:MPANet-YOLOv5相较于YOLOv5模型AP提升了5.4% ,召回率提升了3.3%,AP0.5提升了3.3%,AP0.5:0.95提升了2.2%,不同海域测试结果显示MPANet-YOLOv5海面小目标检测能力明显优于YOLOv5.  相似文献   

8.
为了提高跨模态足迹检索精度,提出一种基于注意力双分支深度卷积神经网络的检索方法.该方法以赤足足迹的光学和压力2个模态图像为研究对象,采集并构建了一个包含138人5520幅足迹图像的跨模态检索数据集;在网络的特征提取模块采用ResNet50作为基础网络搭建双分支结构,并引入空间注意力机制,以提取各模态具有辨别性的特征;在网络的特征嵌入模块,通过部分参数共享学习跨模态共享空间;在双约束损失模块采用交叉熵损失(ID loss)和异质中心损失(HC loss)以增大跨模态足迹特征的类间差异,减小类内差异.实验结果表明:互检索模式下的平均精度均值(mAP)均值和Rank1均值分别为70.83%和87.50%,优于其他一些跨模态检索方法.采用注意力双分支网络模型能够有效进行跨模态足迹检索,可以为现场足迹对比鉴定等应用提供理论基础.  相似文献   

9.
赵桂平  邓飞  王昀  唐云 《科学技术与工程》2022,22(30):13406-13416
针对在相似目标检测问题中,以YOLOv5为代表的一步法漏检错检率高、以Faster R-CNN为代表的两步法检测速度慢的问题,提出了一种改进的YOLOv5-ResNet相似目标检测网络模型。该模型以YOLOv5框架为基础,借鉴了两步法的优点。在边框生成方面,改进了特征融合结构,强化了模型的特征提取能力,降低了总体漏检、误检率。在类别预测方面,引入了SE模块(squeeze and excitation module),在通道方向上施加注意力机制,降低网络检测时的计算量,并保持了较高的准确率。在斯坦福宠物狗数据集和自制音符卡片数据集上的实验结果表明,本文提出的相似目标快速检测模型不仅在识别精度方面略高于Faster R-CNN,而在速度方面仅次于YOLOv5,检测帧率约为YOLOv5的72%,能够满足相似目标检测的实时需要。  相似文献   

10.
针对无人机平台由于内存、算力有限而导致检测模型部署困难、检测速度降低的问题,提出了一种基于YOLOv4的改进模型.首先,为了减小模型内存占用、节省计算资源,根据目标尺寸特点,对YOLOv4原模型的预测层进行了改进,将三尺度检测模型改进为双尺度检测模型;其次,对双尺度检测模型进行正常训练,然后将其BN层的缩放因子进行稀疏...  相似文献   

11.
为加强对河道监控视频图像中散体物料采运船舶的监测和跟踪,从而辅助实现智能、高效的河道采砂监管和散体物料调度,基于You Only Look Once version 3(YOLOv3)算法及迁移学习提出一种河道散体物料船舶目标检测算法。首先使用COCO数据集训练初始的YOLOv3算法,得到模型的预训练权重;然后对从广西重要河道周围监控设备采集的采砂运砂船舶影像数据进行图像处理,得到高质量船舶数据集;最后以此数据集为驱动,利用迁移学习得到的预训练权重来训练针对河道采砂船等重点目标的YOLOv3检测模型。该模型采用Darknet-53作为主干网络,并融合了多尺度的特征图,从而实现对小、中、大等各类目标的检测。实验结果表明:该算法在测试集上的平均精度和检测速度分别达到98.00%和17.78 fps,对提高河道采砂监管效能和实现散体物料智能调度具有现实意义。  相似文献   

12.
针对目前自动驾驶领域的目标检测算法在交通场景下的漏检目标,目标定位不精确、目标特征表达不充分及目标识别效果欠佳等问题,提出一种基于TPH-YOLOv5的道路目标检测方法。首先为了减轻物体尺度急剧变化带来的漏检风险,增加了用于微小物体检测的检测头,为在高密度场景中精确定位对象,使用Transformer预测头来捕获全局信息;其次为了增强模型的特征表达能力,用SIMAM模块对卷积层的输出进行加权;最后,为了提高目标识别的精度,网络颈部增加了4个SPP块来进行多尺度融合,为了加快收敛速度和提高回归精度采用EIOU作为边界框损失函数。通过消融、对比和可视化验证实验表明,提出的算法比YOLOv5在平均精度上提高了8.1%,漏检率明显减少,目标检测效果明显增强。  相似文献   

13.
目前实地部署的商用采矿无人系统大都采用激光雷达和毫米波雷达作为感知传感器,难以准确识别障碍物的类型,尤其是较远处障碍物,不利于正确决策,从而影响无人作业的安全和整体效率.针对这些问题,本文采集了不同场景的矿山数据,并提出了一种基于YOLOv5S的图像目标检测算法.该算法主要进行了三方面改进:首先,使用不同的填充策略和空间注意模块优化采样方法,提高了模型的采样能力;其次,解耦Head预测分支,让每个分支专注自己的任务;最后,优化损失函数,耦合定位和分类,实现定位和分类任务的联合优化.试验表明,三种方法在保持实时性的前提下,可将YOLOv5S的平均精度(Average Precesion, AP)从49.9%提高至58.9%,实现白天、夜间场景下不同尺度的障碍物识别.  相似文献   

14.
为解决卫星接收AIS信号时存在多用户时隙冲突、信号传输过程中时延等问题,针对新的AIS方案,给出卫星接收机船舶正确检测率比较分析结果,同时,给出A类和B类混合分布以及不同海域下A类船舶的正确检测率.该新方案可以提高卫星接收机的船舶检测率.  相似文献   

15.
针对目前车位检测方法效率低的问题,提出一种轻量级车位检测方法OG-YOLOv5。首先,基于YOLOv5网络添加车位分隔线方位回归分支,实现车位方位的准确预测,可直接根据网络预测结果推断完整车位信息;其次,通过检测尺度裁剪、Ghost模块重构网络实现模型轻量化;再者,通过在网络主干中引入ECA注意力机制、优化损失函数提高目标预测精度。通过对比实验,结果表明所提OG-YOLOv5网络的mAP达到了98.8%,模型参数量和计算量仅为原模型的32.0%和28.3%,在GPU和CPU上的检测时间分别减少了16.2%和28.1%,车位检测准确率和召回率分别达到了97.75%和96.87%。  相似文献   

16.
针对检测模型参数量大,难以在嵌入式设备上部署等问题,设计了一种改进的YOLOv4目标检测算法.该算法使用轻量化的MobileNetV1替换CSPDarketnet53主干特征提取网络,并将后续网络中的3×3卷积替换为深度可分离卷积,极大地减少了模型的参数量;在检测头加入NAM注意力模块,增强网络对细节信息的提取能力;采用SDIoU Loss作为边框回归损失,在加快收敛速度的同时提高了检测精度.实验表明:与YOLOv4-CSPDarknet53相比,改进算法在PASCAL VOC07+12数据集上训练出来的模型大小为47.19 M,约为原来的五分之一,FPS提升了40(f/s),mAP提升了2.4%.与YOLOv4-Tiny、YOLOv5s、YOLOv7等目标检测算法相比,具有兼顾检测速度与精度的特点.  相似文献   

17.
现如今,基于YOLOv5的网络模型被广泛应用在行人检测的任务中,在精度和速度上有着良好的效果。但在终端设备上部署使用,往往受到算力的限制。因而,基于RepVGG模型改进的主干网络,并且为了提高在密集人群和复杂环境下的适应性,加入了坐标注意力机制,扩大感受野的同时增强感兴趣区域的权重。经过实验测试,这种轻量化的网络参数量和计算量比较小,而且检测精度和鲁棒性也比较高,能够在一定程度下满足工程应用的要求。  相似文献   

18.
针对遥感图像中飞机检测尺寸大小不一、背景复杂导致的难以识别问题,提出一种基于YOLOv5网络模型的改进方法。首先,在YOLOv5网络模型中融入Swin-Transformer模块,使网络全局建模并使全维度信息交互,以提升网络的特征提取能力;其次,对损失函数进行优化,引入SIOU损失函数以考虑真实框和预测框之间的向量角度问题。对比实验表明,优化前后网络模型检测精度均为95.3%。在检测精度相同的情况下,改进后的网络模型召回率为91.2%,比改进前提升0.6个百分点;改进后平均检测精度mAP0.5为95.7%,比改进前提升0.2个百分点。结果表明,改进后的YOLOv5网络模型能在一定程度上提升遥感图像中飞机目标检测性能。  相似文献   

19.
由于无人机航拍具有场景复杂多样,目标尺度变化剧烈,高速低空运动模糊等诸多特性,给目标检测带来了很大的挑战。针对无人机航拍目标检测效果不佳的问题,提出了Dy-YOLO模型,在YOLOv5的基础上引入Dynamic Head注意力,从尺度感知、空间位置、多任务3个角度探索具有注意力机制的预测头潜力;设计了C3-DCN结构和Dynamic Head注意力相互配合增强特征提取能力;此外,还使用SimOTA标签分配方式来弥补小样本的损失,并使用CARAFE(content-aware resssembly of features)上采样算子,有效增强了不同卷积特征图的融合效果。在VisDrone2019测试集上,Dy-YOLO检测的平均均值精度达到了38.2%,较基线方法YOLOv5提高了7.1%,同时与主流的检测方法相比也取得更高的检测精度。结果表明,Dy-YOLO算法对于无人机航拍检测任务具有较好的性能。  相似文献   

20.
从稳定性与混沌控制的角度,研究了双时滞Rossler系统,这些系统通常出现在发送和接收信号的有源传感问题中.首先,从对系统的特征方程根的分布分析入手,研究时滞对系统平衡点稳定性、Hopf分支及Hopfzero分支存在性的影响;其次,通过选择合适的几何因子和时滞,混沌振荡转变为稳定的平衡点或稳定的周期轨;最后,数值模拟验证了理论结果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号