首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了提高n型半导体SnO2气敏材料的性能,以碳微球为载体,制备了高度分散、粒径均匀的SnO2纳米粒子.采用静态配气法对基于该SnO2的气敏元件性能进行了系统测试,结果表明,在工作温度为330℃时,实验所得SnO2气敏元件对乙醇气体呈现出优异的响应灵敏度,性能优于相同测试条件下商用SnO2气敏材料.对5×10-6~200×10-6乙醇气体测试,结果显示,材料灵敏度与气体浓度有一定的依赖关系,灵敏度随着气体浓度的增加呈线性增长.  相似文献   

2.
聚丙烯腈(PAN)基炭纳米微球是一种功能炭材料,在诸多领域有着广泛的应用前景。不同粒径PAN基炭纳米微球具有不同的结构与性能,其中合成不同粒径PAN纳米微球是制备炭纳米微球的瓶颈。通过权衡比较各种聚合物微球的合成方法和反应介质,认为以丙烯腈(AN)为原料,采用无皂乳液聚合法,在乙醇-水反应介质中可以合成不同粒径的PAN纳米微球。对合成的PAN纳米微球进行氧化和炭化,即可获得不同粒径的PAN基炭纳米微球。  相似文献   

3.
以对苯乙烯磺酸钠(SSS)与苯乙烯组成无皂乳液聚合体系(PS-SSS)制备了粒度不等的窄分布聚苯乙烯(PS)微球,微球粒径可在60~700nm之间调节,粒径分布控制在2%之内。在PS-SSS体系中SSS用量增多会使PS微球的尺度下降,但对粒径分散性没有影响。PS的数均分子量会随着SSS用量增多而略有下降。随着引发剂用量的增多,PS微球粒径会下降,PS的数均分子量明显下降。在二氧化硅溶胶中可稳定制备聚苯乙烯微球,在PS-SSS体系中引入纳米二氧化硅溶胶(NanoSiO2)组成NanoSiO2-PS-SSS体系,可对微球粒度进行调制,NanoSiO2用量的增多会导致制备的聚苯乙烯微球粒径下降,对于微球PS的数均分子量影响很小。聚苯乙烯中引入SSS后会增加苯乙烯聚合速率,提高制备的聚苯乙烯的玻璃化转变温度。  相似文献   

4.
以正硅酸四乙酯(TEOS)为原料采用Stober法制备了单分散、粒径分布均匀、平均直径范围在250~800nm的纳米二氧化硅微球.通过SEM和XRD表征手段,探讨了水、TEOS和氨水用量对SiO2形貌和粒径的影响.结果表明,添加适量的水会得到粒径较大、均匀且分散性好的SiO2微球;随氨水和TEOS用量增多,SiO2粒径增加;若氨水用量太少,则得到粒径虽小但圆度差、表面不光滑的SiO2.  相似文献   

5.
以苯乙烯(St)为单体,采用无皂乳液聚合法及分散聚合法制备了不同粒径的聚苯乙烯微球(PS微球)。运用傅立叶红外光谱(FT-IR)、透射电子显微镜(TEM)、场发射扫描电镜(FE-SEM)、纳米粒径分析仪等手段,对微球的组成成分、表面形态、粒径及其分布进行了表征。结果表面,微球粒径均匀,球形度良好且呈单分散性。  相似文献   

6.
使用原硅酸四乙酯作为硅源,使用聚乙二醇作为软模板,并使用浓氨作为催化剂.选择沉淀法制备了二氧化硅空心微球,并用硅烷偶联剂APS对其进行表面改性,形成胺化微球.通过氯金酸作为金源的还原方法制备金溶胶.采用溶胶-凝胶法合成得到复合纳米Au-Si O2,并对其进行了表征.最终结果表明,二氧化硅微球的粒径分布均匀,粒径约为8μm,APS成功改性.制备的金纳米粒子通过静电吸附单分散并吸附在二氧化硅微球的表面上,平均粒径为约12 nm.  相似文献   

7.
目的,研究纳米SiO2微球组分及制备影响因素、微球表征以及利福平纳米微球的释放效果。方法:1)正交试验选出制备纳米SiO2微球各因素的最佳水平组合;2)乳化剂挥发法制备利福平纳米SiO2微球,并考察和表征其粒径大小、载药量和包封率等指标。3)利福平纳米二氧化硅微球释放评价试验。结果显示:最佳水平组合为A1B3C3D3,即纳米Si02粒径10nm、PLA 80mg/ml、明胶40mg/ml和二氯甲烷:丙酮=2:2。制备的利福平纳米SiO2微球外观圆整,大小均匀,粒径可控。影响载药量因素最主要为聚乳酸含量,其次为两种溶剂(疏水与亲水)的比例,然后是孔径和稳定剂的含量。结论:该方法制备的利福平纳米SiO2微球其载药量、包封率均在60%以上,且体外释放稳定,符合药物缓释的要求。  相似文献   

8.
采用正交试验设计对纳米SiO_2微球各组分因素的不同水平进行优化组合,将各水平组合制备成相应的微球,以微球SiO_2含量为评价指标筛选出最佳组分因素的水平组合.通过考察、表征和比较这些微球的粒径、载药量和包封率等指标,同时结合载药微球-利福平纳米二氧化硅微球的释放试验,分别进行纳米SiO_2微球组分对微球制备、微球表征和药物释放影响的评价.获取的最佳水平组合为A1B3C3D3,即纳米SiO_2粒径10 nm、PLA 80 mg/mL、明胶40 mg/mL和二氯甲烷:丙酮=2∶2.该水平组合制备的利福平纳米SiO_2微球外观圆整,大小均匀,粒径可控,其载药量、包封率均在60%以上,且体外释放稳定,符合药物缓释的要求.实验结果也显示,聚乳酸含量为载药量的最主要影响因素,其次为两种溶剂(疏水与亲水)的比例,以及孔径和稳定剂的含量.  相似文献   

9.
壳聚糖修饰的Lysozyme-PLGA阳离子纳米药物的制备与表征   总被引:1,自引:0,他引:1  
通过二环己基碳二亚胺将聚乳酸-羟基乙酸共聚物(PLGA)活化,又与溶菌酶进行化学键合,再采用单乳化-溶剂挥发技术制备表面带正电荷的壳聚糖(CHS)PLGA纳米微球。对纳米微球制备条件进行了优化。结果表明在ρ(CHS)=3 mg/mL,ρ(PLGA)=5 mg/mL,溶菌酶与PLGA的质量比为0.2的条件下,得到的纳米微球包封率为87.8%,载药量为14.7%。微球粒径φ可控制在(450±50)nm之间,在pH=4时,纳米微球表面ζ电位为42.5mV。SEM图像显示经CHS修饰的Lysozyme-PLGA的纳米微球形状规整。药物释放试验显示纳米微球在20 d后释放达到70%,且释放曲线规整。  相似文献   

10.
通过回流法制备了SnO2纳米小球,再以-环糊精作为碳源通过水热法制备得到SnO2纳米小球/C复合材料. 扫描电子显微镜和粉末X射线衍射仪测试结果表明,所合成复合材料为直径约为30~40 nm的纳米小球,在SnO2的外表面可以看到一层均匀的碳层的包裹. 通过碳的包裹,材料的结构稳定性和导电性增加. 在100 mA/g的电流密度下,200次循环后,放电比容量稳定在749 mAh/g,而在大电流充放电后(100 ~ 800 mA/g),再次回到100 mA/g的电流密度时,放电比容量仍能保持在620 mAh/g.  相似文献   

11.
采用高分子修饰法制备出粒径较小的纳米snO2.研究了不同的反应介质和不同的Sn4+/PVP的配比对纳米SnO2颗粒的尺寸及紫外吸收性能的影响.结果表明,高分子修饰法制备的纳米SnO2极其稳定,且粒径较小.  相似文献   

12.
单分散聚苯乙烯微球的制备及其影响因素的研究   总被引:7,自引:0,他引:7  
以聚乙烯基吡咯烷酮(PVP)为分散剂,无水乙醇为反应介质,偶氮二异丁腈为引发剂,采用分散聚合方法,制备出球形度良好的单分散聚苯乙烯微球。并讨论了初始单体浓度、引发剂用量、稳定剂用量及加料方式对聚苯乙烯微球粒径及分布的影响。结果表明,在一定反应条件下,随着初始单体浓度和引发剂浓度的增大,聚苯乙烯微球的粒径增大,分布变宽;随着分散稳定剂PVP浓度的增大,微球粒径变大,分布变窄。且一次加料有助于形成单分散的聚苯乙烯微球。  相似文献   

13.
以纳米羟基磷灰石和壳聚糖为基质,构建一种新型甲硝唑缓释微球,作为充填材料用于骨修复.利用乙醇为反应溶剂,聚丙烯酸为分散剂,在pH=11的条件下,制备针状纳米羟基磷灰石.采用W/O型反相乳化-交联技术制备羟基磷灰石/壳聚糖载甲硝唑复合微球.通过紫外分光光度法测定甲硝唑含量和体外累积释放度.研究结果表明:制得的羟基磷灰石/壳聚糖载药复合微球粒径主要集中在1~10 μm,壳聚糖对羟基磷灰石和甲硝唑形成了很好的包覆.复合微球平均载药量为38.23%,平均包封率为54.21%,3 d内对甲硝唑的释放达到82%左右.所制备的羟基磷灰石/壳聚糖载药复合微球形态圆整,粒径分布较为均匀,对甲硝唑具有较好的缓释效果.  相似文献   

14.
金纳米粒子(Au NPs)因具有较高的表面能而很容易团聚,致使其应用受到限制;在催化领域通常使用前体还原、负载得到金纳米粒子以及利用稳定剂防止金纳米粒子团聚,从而提高其稳定性和催化活性。本研究从绿色化学角度出发,以天然的茶多酚为碳前体,利用多酚的氧化自聚合,通过自组装一步法制备了不同形貌的多孔茶多酚-金纳米球(TP-Au NPs),再经高温碳化得到多孔碳基-金纳米球(CNS-Au NPs),并考察了聚合温度对多孔碳基-金纳米球孔径和粒径的影响。结果表明:随着聚合温度的降低,多孔碳基-金纳米球的粒径逐渐减小,孔径、比表面积逐渐增大,催化活性升高。  相似文献   

15.
人转铁蛋白修饰海藻酸钠载阿霉素纳米微球的制备与表征   总被引:1,自引:0,他引:1  
通过人转铁蛋白修饰海藻酸钠载阿霉素纳米微球制备一种药物载体,拟解决抗肿瘤药物靶向治疗和肿瘤细胞多药耐药产生的问题.用优化的微乳化-离子交联方法制备包覆阿霉素的海藻酸钠复合纳米微球,以水溶性碳二亚胺为交联剂,将载药微球与人转铁蛋白连接,制备出了人转铁蛋白Tf修饰海藻酸钠载阿霉素纳米微球.结果显示其平均粒径为(170±5.12)nm,外观为圆球型,阿霉素包裹量为11.9%,人转铁蛋白的连接量为42.3%的纳米微球,为解决乳腺癌细胞的多药耐药性提供重要的体外实验基础和科学依据.  相似文献   

16.
聚苯乙烯磁性微球的制备与表征   总被引:1,自引:0,他引:1  
以表面被油酸包覆的纳米级Fe3O4为磁性载体, 苯乙烯和丙烯酸为单体, 二乙烯基苯为交联剂, 用分散聚合的方法合成了粒径分布更均匀而且具有良好超顺磁性的聚苯乙烯磁性微球, 并对这种磁性微球进行形貌、 结构和超顺磁性的表征. 结果表明, 该方法制备的磁性微球粒径分布均匀、 表面光滑, 室温下, 其比饱和磁化强度达到11.61 Am2/kg.  相似文献   

17.
分散聚合制备聚苯乙烯微球   总被引:2,自引:0,他引:2  
以苯乙烯为单体,聚乙烯基吡咯烷酮(PVP)为分散稳定剂,偶氮二异丁腈(AIBN)为引发剂,研究了分散聚合体系中各组分,如单体、分散介质和引发剂等用量的变化对聚合物微球的粒径大小及粒度分布的影响,并利用扫描电子显微镜对微球表面形貌进行了观测.结果表明,体系中的单体浓度、分散介质特性、引发剂用量对所制备微球的粒径大小及粒度分布具有重要影响.通过调整配方,选择合适的工艺参数,可成功制备出粒径2~5 μm、单分散性良好的聚苯乙烯微球,且微球表面光洁,外形均匀对称,相互之间没有粘连.  相似文献   

18.
采用热分解法制备纳米SnO2,并运用浸渍法制备Pd-Cu负载在SnO2上的双金属纳米负载型催化剂.对纳米SnO2进行X射线衍射、透射电镜、比表面积分析;以甲酸为还原剂,在常压下考察了纳米Pd-Cu/SnO2催化还原硝酸盐氮的活性和选择性.结果表明:制备的纳米SnO2的晶粒粒径为8.9~10.4nm或9.3~10.7nm,颗粒粒径在10.0nm左右,BET比表面积最大为144.9892 m2/g;催化还原硝酸盐氮的Pd-Cu配比为6∶1,甲酸的投加量为16.0mmol/L时,硝酸盐氮的去除率为100.00%,催化活性达到0.119mmol/(min.g),总氮的去除率为76.23%,反应的最佳pH值为4.0.  相似文献   

19.
中间相沥青与纳米SiO2颗粒混合研磨至均匀,在450~550℃热处理后制备出中间相沥青基炭微球.以KOH为活化剂,对所制备的炭微球进行化学活化,获得高比表面积(大于3000 m2·g-1)的中孔型活性炭微球.中间相沥青基炭微球制备时的热处理温度以及活化过程中的活化剂配比决定着活性炭微球的结构与形态.  相似文献   

20.
PLLA微球的制备工艺研究   总被引:1,自引:0,他引:1  
目的采用溶剂蒸发法制备聚乳酸(PLLA)微球。方法通过正交实验设计优化PUA微球制备工艺考察了搅拌速度、PVA浓度、PLLA浓度、N2流速、针头直径对评价指标(即微球形态、粒径大小、粒径分布、分散性)的影响,确定制备不同粒径微球的最佳工艺条件。结果采扫描电子显微镜观察微球的外观形态,微球平均粒径为20um且粒径分布集中。5因素对评价指标影响的主次顺序分别为:搅拌速度、PVA浓度、N2流速、PUA浓度、针头直径。结论该经优化制备的PUA微球分散性和成球性好,为下一步栽药微球的制备提供了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号