首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
使用W.G.Sun等(J.Mol.Spectrosc.,2002,215:93-105.)提出的基于微扰理论的代数方法(AM),研究了碱金属异核双原子分子NaLi的A1Σ+,NaK的X1Σ+、c3Σ+,KRb的21Π等4个电子态的离解能;然后使用最近提出的新公式计算了这些电子态的离解能,并分别与实验值进行了比较.理论计算结果表明:使用新公式得到的分子离解能与实验值非常吻合.对那些还没有离解能实验数据的电子态,该公式提供了一种推测其离解能的新方法.  相似文献   

2.
使用基于微扰理论的代数方法(AM),研究了卤素双原子分子Cl2-A′3∏(2u),ClF-A(3∏1)和HgI-X2∑+3个电子态的AM离解能;然后提出了基于AM振动能谱计算双原子分子离解能的新公式,并计算了这些电子态的离解能,分别与实验值进行了比较.计算结果表明:使用新公式得到的分子离解能与实验值非常吻合.  相似文献   

3.
鉴于I2分子电子态的振动能谱和分子离解能De在实际研究和应用中的重要性,本文应用SUN,REN等人提出的基于微扰理论的代数方法(AM),研究了I2分子A’(2u^3Ⅱ),A^3Ⅱ(1u),1g(^1D),0^+g(^1D)和F’(0^+u)电子态的振动光谱常数和完全振动能谱{Ev};使用基于AM的代数能量方法(AEM)获得了这些电子态的高激发振动态的完全振动能谱和分子离解能,为许多需要这些难以从实验中获得双原子分子的精确振动光谱和离解能的科学研究提供了必要的物理数据。  相似文献   

4.
用代数能量方法得到了Li2分子9个电子态的振动光谱常数,完全振动能谱{Ev}和分子离解能De.结果显示:振动能谱{Ev}不仅能重复有限的已知实验数据,而且能给出一些未知的高阶振动能量.用AEM所得到的离解能很好的符合了已知的实验值De.对一些双原子系统,当无法得到实验离解能时,用AEM方法也能得到合理的近似离解能值.  相似文献   

5.
对于大多数双原子分子的电子态, 往往很难直接用现代实验技术或精确的量子理论方法获得体系精确的全部高激发态振动能级和分子离解能De, 而且从理论上推导分子离解能的精确解析表达式也很困难. 以LeRoy和Bernstein基于WKB理论的能量表达式为基础, 建立了计算精确分子离解能的新解析表达式. 并用作者最近建立的代数方法(AM) 获得了N2分子部分电子态的包含所有高振动激发态的完全振动能谱, 进而将AM完全振动能谱与建立的新解析表达式相结合, 计算了这些电子态的精确分子离解能. 研究表明: AM方法和新的离解能解析表达式优势互补, 获得的结果与实验值符合得非常好, 从而在理论上提供了计算双原子分子电子态的精确分子离解能的一个物理新方法.  相似文献   

6.
双原子分子离解能的精确研究   总被引:1,自引:0,他引:1  
基于LeRoy与Bernstein的工作, 该文建立了计算精确的分子离解能的新解析表达式. 应用该公式和作者最近建立的研究双原子分子精确振动能谱的代数方法, 研究了一些异核(氢化物)和同核(N2)双原子分子体系部分电子态的分子离解能, 并与实验值进行了比较. 研究结果表明, 用新解析式获得的精确分子离解能与实验值符合得非常好; 此外, 以 7Li2分子的23g 电子态为例, 使用建立的新公式从理论上预言了尚没有离解能实验数据的正确离解能数值. 该式在理论上提供了获得精确分子离解能的物理新方法.  相似文献   

7.
本文使用基于微扰理论的代数方法(AM),研究了碱金属异核双原子分子NaRb的a^3∑^+电子态的振动光谱常数和振动能级;使用基于AM的代数能量方法(AEM)研究了该电子态的离解能.结果表明:基于少数精确的实验振动能级[Eυ],用AM方法获得了精确的分子振动光谱常数集合,还获得了包含所有高振动量子态能级的完全振动能谱{Eυ};用AEM方法获得的分子离解能比由文献发表的振动光谱常数计算得到的离解能更准确.  相似文献   

8.
K2分子的各电子态的能谱研究以及分子离解能的研究很活跃,也具有很重要的意义,然而对K2分子的多数电子态,用实验的方法一般只能获得低振动能级的能谱,对于高阶振动能谱,实验是很难获得的,从而用实验的方法来获得各电子态的完全振动能谱是很困难的.利用文献中实验测得的低阶振动能谱,运用SUN、REN等人提出的代数方法(AM)获得了K2分子A1∑ u电子态的高能级振动能谱,从而得到电子态的完全振动能谱,进而得到比较精确的离解能的理论值.  相似文献   

9.
10.
利用分子反应静力学的原理,确定了^7Li2分子A^1∑^+态的离解极限;利用SAC-CI方法、使用6-311G、6-311++G、6-31IG(3df,3pa)、6-311++G(3df,3pd)、D95(3df,3pd)、D95、D95V、D95V(d,p)、cc-PVTZ和AUG-cc-PVTZ等基组,对^7Li2分子A^1∑^+u态的平衡几何进行了优化计算,且将计算结果与精细的单点能扫描结果进行了比较.分析表明。由单点能扫描获得的平衡核间距应更为合理.同时也得出了AUG-cc-PVTZ基组为最优基组的结论.在0.14—1.5nm范围内对该态进行了单点能扫描,并用最小二乘法拟合出了其解析势能函数.从得到的解析势能函数出发,计算了谊态的力常数(f2、f3和f4)及谐振频率(ωe),进而计算了其他光谱常数(Be,αe和ωeХe),理论值与实验结果一致.同时为便于分析和比较,对基态X^1∑^+g也进行了相应的计算.  相似文献   

11.
应用最近建立的能正确预言双原子分子P线系高激发振转跃迁谱线的新公式,首次研究了TiF分子在次带G4Φ5/2-X4Φ5/2跃迁体系内(0,1)跃迁带的P支发射光谱.研究结果表明,该方法不仅可以精确地重复已知的实验谱线数据,而且从理论上预测了现阶段实验上难以获得的包含转动量子数J=90.5在内的高激发振转态发射谱线的正确数据.  相似文献   

12.
利用QCISD(T)、SAC-CI方法,使用cc-PVQZ,aug-cc-PVTZ,6-311++g及6-311++G(3df, 2pd)基组, 对MgH分子的基态X2∑+、第一简并激发态A2∏平衡结构进行优化计算.通过对四个基组计算结果进行比较,得出6-311++G(3df,2pd)基组为最优基组.使用6-311++G(3df,2pd)基组和QCISD(T)方法对基态X2∑+,SAC-CI的GSUM(group sum of operators)方法对激发态A2∏进行单点能扫描计算,然后采用Murrel  相似文献   

13.
精确计算Be+2 分子UHF水平的电子性质   总被引:1,自引:0,他引:1  
采用MP2/6-311G水平的优化构型,对Be+2的电子性质进行了从头算研究.用UHF方法对Be+2的无微扰能量和(超)极化率计算进行了基组优化设计,排除基组选择的偶然性.精确选择可以得到稳定(超)极化率的电场范围,用FF方法计算了在优化构型下Be+2的超极化率.得到了Be+2可靠的无微扰能量E、轴向极化率α和轴向超极化率γ的UHF方法极限结果.推荐基组43s16p4d1f的计算结果是:E=-28.9202225824,α=146.3977556,γ=-4.81145423×105.  相似文献   

14.
目的应用GAMESS[14]程序和新的多参考态组态相互作用(MRCISD)对S2O分子基态和与基态具有相同对称性及多重度的两个低激发态的离解进行研究。方法采用完全活性空间自洽场(CASSCF),沿着S-S伸缩振动坐标详细地解析基态X珘1A’和两个激发态C珘1A’和珟D1A’的离解以及C珘1A’预离解。结果采用不同的方法,珟D1A’态所获得的离解模式不同。对于非态平均的CASSCF方法,C珘1A’态与珟D1A’态的离解极限都为SO(1Δ)+S(1D)。对于态平均的完全活性空间自洽场(SA-CASSCF)方法,珟D1A’态离解极限与基态X珘1A’相同,均为SO(3Σ-)+S(3P),而C珘1A’态的离解极限为SO(1Δ)+S(1D)。X珘1A’态的离解能在MRCISD水平约为3.10 eV,比热化学值3.45±0.01 eV小0.35±0.01 eV。结论计算的C珘1A’态的预离解极限存在于S-S伸缩振动的26谱带附近,与实验值吻合得很好。  相似文献   

15.
使用SAC/SAC-CI方法,利用D95++**、6-311++g**以及cc-PVTZ等基组,对H2分子的基态X1+∑+g、第二激发态B1∑u+u及第三简并激发态C1∏u的平衡结构和谐振频率进行了优化计算.通过对三个基组的计算结果的比较,得出了cc-PVTZ基组为三个基组中的最优基组的结论;使用cc-PVTZ基组,利用SAC的GSUM(Group Sum of Operators)方法对基态X1∑+g、SAC-CI的GSUM方法对激发态B1∑+u和C1∏u进行单点能扫描计算,用正规方程组拟合Murrell-Sorbie函数,得到了相应电子态的完整势能函数;从得到的势能函数计算了与基态X1∑+g、第二激发态B1∑+u和第三简并激发态C1∏u相对应的光谱常数(Be,αe,ωe和ωeχe),结果与实验数据基本一致.  相似文献   

16.
使用SAC/SAC-CI方法,利用D95 **、6-311 g**以及cc-PVTZ等基组,对H2分子的基态X1 ∑ g、第二激发态B1∑u u及第三简并激发态C1∏u的平衡结构和谐振频率进行了优化计算.通过对三个基组的计算结果的比较,得出了cc-PVTZ基组为三个基组中的最优基组的结论;使用cc-PVTZ基组,利用SAC的GSUM(Group Sum of Operators)方法对基态X1∑ g、SAC-CI的GSUM方法对激发态B1∑ u和C1∏u进行单点能扫描计算,用正规方程组拟合Murrell-Sorbie函数,得到了相应电子态的完整势能函数;从得到的势能函数计算了与基态X1∑ g、第二激发态B1∑ u和第三简并激发态C1∏u相对应的光谱常数(Be,αe,ωe和ωeχe),结果与实验数据基本一致.  相似文献   

17.
18.
为了实现自主设计的纯电动赛车在转向过程中左右两侧车轮差速旋转并使得车辆快速稳定转向,文章综合考虑各因素以契合赛车软硬件要求,建立Ackermann-Jeantand模型并求出理想横摆角速度,再以车辆质心偏移角为控制依据、横摆角速度为控制目标构建电子差速算法;使用Matlab/Simulink软件搭建仿真模型进行直线及转...  相似文献   

19.
对一个常用的电磁学公式提出了质疑 ,并推导出一个更为合理的新公式  相似文献   

20.
We use scanning tunneling microscopy to visualize the atomic-scale electronic states induced by a pair of hole dopants in Ca2CuO2Cl2 parent Mott insulator of cu...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号