首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
R Gray  D Johnston 《Nature》1987,327(6123):620-622
The predominance of unconventional transmitter release sites at noradrenaline-containing synapses and the diffuse projections of noradrenaline-containing fibres originating in locus coeruleus have led to speculation that noradrenaline may act as a neuromodulator in the central nervous system. Evidence suggests that it has a modulatory function in the plasticity of the developing nervous system, in controlling behavioural states of an organism, and in learning and memory. Recently, Hopkins and Johnston demonstrated that noradrenaline enhances the magnitude, duration and probability of induction of long-term potentiation (LTP) at mossy fibre synapses in the hippocampal formation, and LTP is widely believed to be a cellular substrate for aspects of memory. To investigate the membrane effects of noradrenaline on central neurons, we used a newly developed preparation in which patch-clamp techniques can be applied to exposed adult cortical neurons. We report here that noradrenaline produces an enhancement in the activity of voltage-dependent calcium channels in granule cells of the hippocampal dentate gyrus. This action appears to be mediated by beta-adrenoceptors and can be mimicked by cyclic AMP.  相似文献   

2.
RIM1alpha is required for presynaptic long-term potentiation.   总被引:8,自引:0,他引:8  
Two main forms of long-term potentiation (LTP)-a prominent model for the cellular mechanism of learning and memory-have been distinguished in the mammalian brain. One requires activation of postsynaptic NMDA (N-methyl d-aspartate) receptors, whereas the other, called mossy fibre LTP, has a principal presynaptic component. Mossy fibre LTP is expressed in hippocampal mossy fibre synapses, cerebellar parallel fibre synapses and corticothalamic synapses, where it apparently operates by a mechanism that requires activation of protein kinase A. Thus, presynaptic substrates of protein kinase A are probably essential in mediating this form of long-term synaptic plasticity. Studies of knockout mice have shown that the synaptic vesicle protein Rab3A is required for mossy fibre LTP, but the protein kinase A substrates rabphilin, synapsin I and synapsin II are dispensable. Here we report that mossy fibre LTP in the hippocampus and the cerebellum is abolished in mice lacking RIM1alpha, an active zone protein that binds to Rab3A and that is also a protein kinase A substrate. Our results indicate that the long-term increase in neurotransmitter release during mossy fibre LTP may be mediated by a unitary mechanism that involves the GTP-dependent interaction of Rab3A with RIM1alpha at the interface of synaptic vesicles and the active zone.  相似文献   

3.
Mori M  Abegg MH  Gähwiler BH  Gerber U 《Nature》2004,431(7007):453-456
The hippocampus, a brain structure essential for memory and cognition, is classically represented as a trisynaptic excitatory circuit. Recent findings challenge this view, particularly with regard to the mossy fibre input to CA3, the second synapse in the trisynaptic pathway. Thus, the powerful mossy fibre input to CA3 pyramidal cells might mediate both synaptic excitation and inhibition. Here we show, by recording from connected cell pairs in rat entorhinal-hippocampal slice cultures, that single action potentials in a dentate granule cell evoke a net inhibitory signal in a pyramidal cell. The hyperpolarization is due to disynaptic feedforward inhibition, which overwhelms monosynaptic excitation. Interestingly, this net inhibitory synaptic response changes to an excitatory signal when the frequency of presynaptic action potentials increases. The process responsible for this switch involves the facilitation of monosynaptic excitatory transmission coupled with rapid depression of inhibitory circuits. This ability to immediately switch the polarity of synaptic responses constitutes a novel synaptic mechanism, which might be crucial to the state-dependent processing of information in associative hippocampal networks.  相似文献   

4.
Glutamate spillover suppresses inhibition by activating presynaptic mGluRs   总被引:17,自引:0,他引:17  
Mitchell SJ  Silver RA 《Nature》2000,404(6777):498-502
Metabotropic glutamate receptors (mGluRs) found on synaptic terminals throughout the brain are thought to be important in modulating neurotransmission. Activation of mGluRs by synaptically released glutamate depresses glutamate release from excitatory terminals but the physiological role of mGluRs on inhibitory terminals is unclear. We have investigated activation of mGluRs on inhibitory terminals within the cerebellar glomerulus, a structure in which GABA (gamma-aminobutyric acid)-releasing inhibitory terminals and glutamatergic excitatory terminals are in close apposition and make axo-dendritic synapses onto granule cells. Here we show that 'spillover' of glutamate, which is released from excitatory mossy fibres, inhibits GABA release from Golgi cell terminals by activating presynaptic mGluRs under physiological conditions. The magnitude of the depression of the inhibitory postsynaptic current is dependent on the frequency of mossy fibre stimulation, reaching 50% at 100 Hz. Furthermore, the duration of inhibitory postsynaptic current depression mirrors the time course of mossy fibre activity. Our results establish that mGluRs on inhibitory interneuron axons sense the activity of neighbouring excitatory synapses. This heterosynaptic mechanism is likely to boost the efficacy of active excitatory fibres by locally reducing the level of inhibition.  相似文献   

5.
Chadderton P  Margrie TW  Häusser M 《Nature》2004,428(6985):856-860
To understand the computations performed by the input layers of cortical structures, it is essential to determine the relationship between sensory-evoked synaptic input and the resulting pattern of output spikes. In the cerebellum, granule cells constitute the input layer, translating mossy fibre signals into parallel fibre input to Purkinje cells. Until now, their small size and dense packing have precluded recordings from individual granule cells in vivo. Here we use whole-cell patch-clamp recordings to show the relationship between mossy fibre synaptic currents evoked by somatosensory stimulation and the resulting granule cell output patterns. Granule cells exhibited a low ongoing firing rate, due in part to dampening of excitability by a tonic inhibitory conductance mediated by GABA(A) (gamma-aminobutyric acid type A) receptors. Sensory stimulation produced bursts of mossy fibre excitatory postsynaptic currents (EPSCs) that summate to trigger bursts of spikes. Notably, these spike bursts were evoked by only a few quantal EPSCs, and yet spontaneous mossy fibre inputs triggered spikes only when inhibition was reduced. Our results reveal that the input layer of the cerebellum balances exquisite sensitivity with a high signal-to-noise ratio. Granule cell bursts are optimally suited to trigger glutamate receptor activation and plasticity at parallel fibre synapses, providing a link between input representation and memory storage in the cerebellum.  相似文献   

6.
Recovery of learning and memory is associated with chromatin remodelling   总被引:1,自引:0,他引:1  
Fischer A  Sananbenesi F  Wang X  Dobbin M  Tsai LH 《Nature》2007,447(7141):178-182
Neurodegenerative diseases of the central nervous system are often associated with impaired learning and memory, eventually leading to dementia. An important aspect in pre-clinical research is the exploration of strategies to re-establish learning ability and access to long-term memories. By using a mouse model that allows temporally and spatially restricted induction of neuronal loss, we show here that environmental enrichment reinstated learning behaviour and re-established access to long-term memories after significant brain atrophy and neuronal loss had already occurred. Environmental enrichment correlated with chromatin modifications (increased histone-tail acetylation). Moreover, increased histone acetylation by inhibitors of histone deacetylases induced sprouting of dendrites, an increased number of synapses, and reinstated learning behaviour and access to long-term memories. These data suggest that inhibition of histone deacetylases might be a suitable therapeutic avenue for neurodegenerative diseases associated with learning and memory impairment, and raises the possibility of recovery of long-term memories in patients with dementia.  相似文献   

7.
Saviane C  Silver RA 《Nature》2006,439(7079):983-987
What limits the rate at which sensory information can be transmitted across synaptic connections in the brain? High-frequency signalling is restricted to brief bursts at many central excitatory synapses, whereas graded ribbon-type synapses can sustain release and transmit information at high rates. Here we investigate transmission at the cerebellar mossy fibre terminal, which can fire at over 200 Hz for sustained periods in vivo, yet makes few synaptic contacts onto individual granule cells. We show that connections between mossy fibres and granule cells can sustain high-frequency signalling at physiological temperature. We use fluctuation analysis and pharmacological block of desensitization to identify the quantal determinants of short-term plasticity and combine these with a short-term plasticity model and cumulative excitatory postsynaptic current analysis to quantify the determinants of sustained high-frequency transmission. We show that release is maintained at each release site by rapid reloading of release-ready vesicles from an unusually large releasable pool of vesicles (approximately 300 per site). Our results establish that sustained vesicular release at high rates is not restricted to graded ribbon-type synapses and that mossy fibres are well suited for transmitting broad-bandwidth rate-coded information to the input layer of the cerebellar cortex.  相似文献   

8.
A widespread interest in a long-lasting form of synaptic enhancement in hippocampal circuits has arisen largely because it might reflect the activation of physiological mechanisms that underlie rapid associative learning. As its induction normally requires the 'Hebbian' association of activity on a number of input fibres, we refer to the process as long-term enhancement (LTE) rather than long-term potentiation (LTP), to emphasize its distinction from the ubiquitous, non-associative 'potentiation' phenomena that occur at most synapses, including those exhibiting LTE. Among other evidence that LTE might actually have a role in associative memory is the demonstration that repeated high-frequency stimulation, which saturated the inducible LTE, caused a severe deficit in spatial learning, although it had no effect on well established spatial memory. These results were consistent with a widespread view that information need only temporarily be stored in the hippocampal formation in order for long-term memories to be established in neocortical circuits. In this context, it is important to understand whether the possible underlying synaptic changes are of a permanent character, or are relatively transient. A second question is whether the actual cause of the observed learning deficit is the distruption of the synaptic weight distribution, and/or the limitation of further synaptic change, which presumably results from experimental saturation of the LTE mechanism. Alternatively, the deficit could be a consequence of some unobserved secondary effect of the high-frequency electrical stimulation. Here we demonstrate that learning capacity recovers in about the same time that it takes LTE to decay, which strongly favours the first possibility and supports the idea that LTE-like processes actually underlie associative memory.  相似文献   

9.
Retrograde amnesia observed following hippocampal lesions in humans and animals is typically temporally graded, with recent memory being impaired while remote memories remain intact, indicating that the hippocampal formation has a time-limited role in memory storage. However, this claim remains controversial because studies involving hippocampal lesions tell us nothing about the contribution of the hippocampus to memory storage if this region was present at the time of memory retrieval. We therefore used non-invasive functional brain imaging using (14C)2-deoxyglucose uptake to examine how the brain circuitry underlying long-term memory storage is reorganized over time in an intact brain. Regional metabolic activity in the brain was mapped in mice tested at different times for retention of a spatial discrimination task. Here we report that increasing the retention interval from 5 days to 25 days resulted in both decreased hippocampal metabolic activity during retention testing and a loss of correlation between hippocampal metabolic activity and memory performance. Concomitantly, a recruitment of certain cortical areas was observed. These results indicate that there is a time-dependent reorganization of the neuronal circuitry underlying long-term memory storage, in which a transitory interaction between the hippocampal formation and the neocortex would mediate the establishment of long-lived cortical memory representations.  相似文献   

10.
Kainate receptors are involved in synaptic plasticity   总被引:21,自引:0,他引:21  
The ability of synapses to modify their synaptic strength in response to activity is a fundamental property of the nervous system and may be an essential component of learning and memory. There are three classes of ionotropic glutamate receptor, namely NMDA (N-methyl-D-aspartate), AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole-4-propionic acid) and kainate receptors; critical roles in synaptic plasticity have been identified for two of these. Thus, at many synapses in the brain, transient activation of NMDA receptors leads to a persistent modification in the strength of synaptic transmission mediated by AMPA receptors. Here, to determine whether kainate receptors are involved in synaptic plasticity, we have used a new antagonist, LY382884 ((3S, 4aR, 6S, 8aR)-6-((4-carboxyphenyl)methyl-1,2,3,4,4a,5,6,7,8,8a-decahydro isoquinoline-3-carboxylic acid), which antagonizes kainate receptors at concentrations that do not affect AMPA or NMDA receptors. We find that LY382884 is a selective antagonist at neuronal kainate receptors containing the GluR5 subunit. It has no effect on long-term potentiation (LTP) that is dependent on NMDA receptors but prevents the induction of mossy fibre LTP, which is independent of NMDA receptors. Thus, kainate receptors can act as the induction trigger for long-term changes in synaptic transmission.  相似文献   

11.
Medina JF  Nores WL  Mauk MD 《Nature》2002,416(6878):330-333
A fundamental tenet of cerebellar learning theories asserts that climbing fibre afferents from the inferior olive provide a teaching signal that promotes the gradual adaptation of movements. Data from several forms of motor learning provide support for this tenet. In pavlovian eyelid conditioning, for example, where a tone is repeatedly paired with a reinforcing unconditioned stimulus like periorbital stimulation, the unconditioned stimulus promotes acquisition of conditioned eyelid responses by activating climbing fibres. Climbing fibre activity elicited by an unconditioned stimulus is inhibited during the expression of conditioned responses-consistent with the inhibitory projection from the cerebellum to inferior olive. Here, we show that inhibition of climbing fibres serves as a teaching signal for extinction, where learning not to respond is signalled by presenting a tone without the unconditioned stimulus. We used reversible infusion of synaptic receptor antagonists to show that blocking inhibitory input to the climbing fibres prevents extinction of the conditioned response, whereas blocking excitatory input induces extinction. These results, combined with analysis of climbing fibre activity in a computer simulation of the cerebellar-olivary system, suggest that transient inhibition of climbing fibres below their background level is the signal that drives extinction.  相似文献   

12.
M Kano  M Kato 《Nature》1987,325(6101):276-279
Long-term modification of transmission efficacy at synapses is the cellular basis of memory and learning. A special type of synaptic plasticity in the cerebellum was postulated theoretically, and has since been verified. Each cerebellar Purkinje cell (PC) receives two distinct excitatory inputs, one from parallel fibres (PFs) and the other from a climbing fibre (CF). When these two types of inputs are conjunctively activated, PF-PC transmission undergoes long-term depression (LTD). Accumulated evidence suggests that LTD plays a role in the motor learning processes of the cerebellum. At the molecular level, LTD appears to be caused by desensitization of receptor molecules in PC dendrites towards the PF neurotransmitter, presumably L-glutamate (Glu). Glu receptors are heterogeneous and can be divided into several subtypes. In this study, we compared the potency of several Glu agonists in inducing LTD and found a highly selective dependency of LTD on the quisqualate(QA)-selective subtype of Glu receptors.  相似文献   

13.
G Bi  M Poo 《Nature》1999,401(6755):792-796
Activity-dependent changes in synaptic efficacy or connectivity are critical for the development, signal processing and learning and memory functions of the nervous system. Repetitive correlated spiking of pre- and postsynaptic neurons can induce a persistent increase or decrease in synaptic strength, depending on the timing of the pre- and postsynaptic excitation. Previous studies on such synaptic modifications have focused on synapses made by the stimulated neuron. Here we examine, in networks of cultured hippocampal neurons, whether and how localized stimulation can modify synapses that are remote from the stimulated neuron. We found that repetitive paired-pulse stimulation of a single neuron for brief periods induces persistent strengthening or weakening of specific polysynaptic pathways in a manner that depends on the interpulse interval. These changes can be accounted for by correlated pre- and postsynaptic excitation at distant synaptic sites, resulting from different transmission delays along separate pathways. Thus, through such a 'delay-line' mechanism, temporal information coded in the timing of individual spikes can be converted into and stored as spatially distributed patterns of persistent synaptic modifications in a neural network.  相似文献   

14.
F Engert  T Bonhoeffer 《Nature》1999,399(6731):66-70
Long-term enhancement of synaptic efficacy in the hippocampus is an important model for studying the cellular mechanisms of neuronal plasticity, circuit reorganization, and even learning and memory. Although these long-lasting functional changes are easy to induce, it has been very difficult to demonstrate that they are accompanied or even caused by morphological changes on the subcellular level. Here we combined a local superfusion technique with two-photon imaging, which allowed us to scrutinize specific regions of the postsynaptic dendrite where we knew that the synaptic changes had to occur. We show that after induction of long-lasting (but not short-lasting) functional enhancement of synapses in area CA1, new spines appear on the postsynaptic dendrite, whereas in control regions on the same dendrite or in slices where long-term potentiation was blocked, no significant spine growth occurred.  相似文献   

15.
Harvey CD  Svoboda K 《Nature》2007,450(7173):1195-1200
Long-term potentiation (LTP) of synaptic transmission underlies aspects of learning and memory. LTP is input-specific at the level of individual synapses, but neural network models predict interactions between plasticity at nearby synapses. Here we show in mouse hippocampal pyramidal cells that LTP at individual synapses reduces the threshold for potentiation at neighbouring synapses. After input-specific LTP induction by two-photon glutamate uncaging or by synaptic stimulation, subthreshold stimuli, which by themselves were too weak to trigger LTP, caused robust LTP and spine enlargement at neighbouring spines. Furthermore, LTP induction broadened the presynaptic-postsynaptic spike interval for spike-timing-dependent LTP within a dendritic neighbourhood. The reduction in the threshold for LTP induction lasted approximately 10 min and spread over approximately 10 microm of dendrite. These local interactions between neighbouring synapses support clustered plasticity models of memory storage and could allow for the binding of behaviourally linked information on the same dendritic branch.  相似文献   

16.
Frankland PW  O'Brien C  Ohno M  Kirkwood A  Silva AJ 《Nature》2001,411(6835):309-313
Cortical plasticity seems to be critical for the establishment of permanent memory traces. Little is known, however, about the molecular and cellular processes that support consolidation of memories in cortical networks. Here we show that mice heterozygous for a null mutation of alpha-calcium-calmodulin kinase II (alpha-CaMKII+/-) show normal learning and memory 1-3 days after training in two hippocampus-dependent tasks. However, their memory is severely impaired at longer retention delays (10-50 days). Consistent with this, we found that alpha-CaMKII+/- mice have impaired cortical, but not hippocampal, long-term potentiation. Our results represent a first step in unveiling the molecular and cellular mechanisms underlying the establishment of permanent memories, and they indicate that alpha-CaMKII may modulate the synaptic events required for the consolidation of memory traces in cortical networks.  相似文献   

17.
Lever C  Wills T  Cacucci F  Burgess N  O'Keefe J 《Nature》2002,416(6876):90-94
The hippocampus is widely believed to be involved in the storage or consolidation of long-term memories. Several reports have shown short-term changes in single hippocampal unit activity during memory and plasticity experiments, but there has been no experimental demonstration of long-term persistent changes in neuronal activity in any region except primary cortical areas. Here we report that, in rats repeatedly exposed to two differently shaped environments, the hippocampal-place-cell representations of those environments gradually and incrementally diverge; this divergence is specific to environmental shape, occurs independently of explicit reward, persists for periods of at least one month, and transfers to new enclosures of the same shape. These results indicate that place cells may be a neural substrate for long-term incidental learning, and demonstrate the long-term stability of an experience-dependent firing pattern in the hippocampal formation.  相似文献   

18.
W Thompson 《Nature》1983,302(5909):614-616
The synaptic connections among the cells of the vertebrate nervous system undergo extensive rearrangements early in development. During their initial growth, neurones apparently form synaptic connections with an excessive number of targets, later retracting a portion of these synapses in establishing the adult neural circuits. Because of the profound effects which experience has upon the developing nervous system, a question of considerable interest has been the role which the functional use of these developing synapses might play in determining the final pattern of connectivity. At the neuromuscular junction the early changes in synaptic connections are well documented, and here questions about the importance of function can be relatively easily addressed. Mammalian skeletal muscle fibres experience a perinatal period of synapse elimination so that all but one of several synapses formed on each muscle fibre are lost. This synapse elimination is sensitive to alterations of neuromuscular use or activity. Reduction of muscle use by tenotomy or by paralysis of the muscle with drugs blocking nerve impulse conduction or neuromuscular transmission delays or even prevents synapse loss, while increased use produced by stimulation of the muscle nerve apparently accelerates the rate at which synapses are lost. I report here a further examination of the role of neuromuscular activity in synapse elimination. I show that chronic neuromuscular stimulation accelerates synapse elimination but that this acceleration is dependent on the temporal pattern in which the stimuli are presented: brief stimulus trains containing 100 Hz bursts of stimuli produce this acceleration whereas the same number of stimuli presented continuously at 1 Hz do not. Furthermore, the 100 Hz activity pattern which is effective in altering synapse elimination also alters two other muscle properties: the sensitivity of the muscle fibers to acetylcholine and the 'speed' of muscle contractions. These findings suggest that the ability of muscle fibres to maintain more than one nerve terminal, like other muscle properties, is sensitive to the pattern of muscle use rather than just the total amount of use.  相似文献   

19.
Fu M  Yu X  Lu J  Zuo Y 《Nature》2012,483(7387):92-95
Many lines of evidence suggest that memory in the mammalian brain is stored with distinct spatiotemporal patterns. Despite recent progresses in identifying neuronal populations involved in memory coding, the synapse-level mechanism is still poorly understood. Computational models and electrophysiological data have shown that functional clustering of synapses along dendritic branches leads to nonlinear summation of synaptic inputs and greatly expands the computing power of a neural network. However, whether neighbouring synapses are involved in encoding similar memory and how task-specific cortical networks develop during learning remain elusive. Using transcranial two-photon microscopy, we followed apical dendrites of layer 5 pyramidal neurons in the motor cortex while mice practised novel forelimb skills. Here we show that a third of new dendritic spines (postsynaptic structures of most excitatory synapses) formed during the acquisition phase of learning emerge in clusters, and that most such clusters are neighbouring spine pairs. These clustered new spines are more likely to persist throughout prolonged learning sessions, and even long after training stops, than non-clustered counterparts. Moreover, formation of new spine clusters requires repetition of the same motor task, and the emergence of succedent new spine(s) accompanies the strengthening of the first new spine in the cluster. We also show that under control conditions new spines appear to avoid existing stable spines, rather than being uniformly added along dendrites. However, succedent new spines in clusters overcome such a spatial constraint and form in close vicinity to neighbouring stable spines. Our findings suggest that clustering of new synapses along dendrites is induced by repetitive activation of the cortical circuitry during learning, providing a structural basis for spatial coding of motor memory in the mammalian brain.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号