共查询到20条相似文献,搜索用时 156 毫秒
1.
针对当前主动学习策略直接用于支持向量机(SVM)分类器时存在泛化能力不强的问题,提出了两层主动学习策略(TLAC),该策略利用协调训练的思想,深层挖掘未标记样本数据的分布知识,从而选择最有利于分类器性能的样本来训练分类器.实验表明,该TLAC策略能够合理地指定TSVM算法中的正样本数,在典型指标测试中都表现出了一定的优越性. 相似文献
2.
针对现有体育视频分类方法中采用单个特征或简单组合无法提高分类精确度问题,提出一种颜色和纹理非线性融合的特征提取方法,并进一步设计基于SVM的分类器.主要工作包括:颜色空间转换、颜色索引矩阵定义、颜色共生矩阵定义、颜色纹理提取和多分类算法设计.实验结果表明非线性融合方法比单颜色、单纹理或颜色和纹理的简单融合在体育视频分类上具有更好的类别区分度,分类精确度平均分别提高了9.94%,8.66%,6.90%. 相似文献
3.
介绍了增量学习算法、序列最小优化算法、加权支持向量机算法等几种应用于大型数据库,在加快训练速度、降低分类错误率等方面有改进的SVM流行算法.在分析各种算法优缺点的基础上,提出了在线性样本训练、超大规模样本下满足KKT条件的算法是SVM算法的发展方向的观点. 相似文献
4.
提出了基于K-means的二阶段多类SVM分类方法.该方法分为二个阶段:第一阶段采用K-means聚类,通过抽样精度来提高聚类准确度;第二阶段采用LIBSVM进行分类.通过使用LIBSVM提供的语料进行实验,结果显示比直接使用LIBSVM进行分类准确度提高了9.35%. 相似文献
5.
6.
多元分类器通常需要在训练时间和分类精度之间折衷.提出了加权阈值策略和一对多分类方法的改进算法 OVA WWT,以增加结果融合的公平性,从而提高分类精度.基于OVA WWT策略和SVMlight二元分类器,实现了基于SVMlight的多元分类器MSVMlight.在CWT100G数据集进行的实验表明,该分类器具有较高的分类精度以及较短的训练和分类时间.相同的数据集上的阈值策略选择实验也说明了加权阈值策略能提高分类精度. 相似文献
7.
针对AdaBoost的分量分类器的分类精度和差异性互为矛盾、以至于该矛盾的存在降低了AdaBoost算法的分类精度和泛化性的问题,提出了一种变σ-AdaBoostRBFSVM算法,通过根据训练样本调整各个分量分类器的核函数参数值,使分量分类器在精度和差异性之间达到一定的平衡,从而提高了集成分类器的分类精度和泛化性。对标准数据集的分类实验结果表明了算法的有效性。 相似文献
8.
为弥补特征提取中的语义缺陷,提出了一种利用领域知识规则填补特征与高级语义之间鸿沟的思想,从体育视频中对语义对象进行有效的特征提取,并采用支持向量机元分类器和组合策略对体育视频进行分类的方法.实验表明,该分类方法对大部分体育视频都具有很好的分类效果,平均准确率可达92.23%,优于其他提取特征无语义关联的分类方法. 相似文献
9.
针对传统的Web信息抽取方法运算量大、自动化程度低的问题,提出了一种基于SVM的WEB信息自动化抽取方法。利用SVM优秀的分类性能将网页中有用数据和无用数据分类标注,有效地完成Web信息抽取任务,准确地抽取出所需信息,实现数据抽取的自动化。实验结果表明,该方法可以有效地获取网页信息特征,具有较高的召回率和准确率。 相似文献
10.
对预处理后的指纹图像进行分类相关算法研究,提出一种无需迭代的指纹参考点定位方法,该算法具有简单、快速、效果好的优点;基于指纹方向场的半区域特征提取方法,采用二叉树结构的支持向量机多分类策略解决指纹的多分类问题.实验表明,分类精度良好. 相似文献
11.
针对传统SVM无法适应文本数据库随着时间不断更新的问题,通过对新增文本集的KKT条件的分析,研究了加入新增文本集后支持向量集的变化,提出了使用增量SVM进行文本分类的算法,并通过实验验证了通过该算法得到的分类器和传统分类器有着相似的分类能力和泛化能力. 相似文献
12.
对目前比较流行的4种中文文本分类器(Rocchio、KNN、NaiveBayes、最大熵)进行评价,其中,NaiveBayes和最大熵是基于概率统计的方法,而Rocchio和KNN是基于向量的相似度计算的方法。选用χ2作为文本特征选取方法,对一个中文文本分类语料库进行分类评测。实验结果表明,最大熵和NaiveBayes的分类性能十分接近,处于较好水平,而KNN和Rocchio分类性能稍差一些。 相似文献
13.
对目前比较流行的4种中文文本分类器(Rocchio、KNN、Naive Bayes、最大熵)进行评价,其中,Naive Bayes和最大熵是基于概率统计的方法,而Rocchio和KNN是基于向量的相似度计算的方法.选用χ2作为文本特征选取方法,对一个中文文本分类语料库进行分类评测.实验结果表明,最大熵和Naive Bayes的分类性能十分接近,处于较好水平,而KNN和Rocchio分类性能稍差一些. 相似文献
14.
对目前比较流行的4种中文文本分类器(Rocchio、KNN、Naive Bayes、最大熵)进行评价,其中,Naive Bayes和最大熵是基于概率统计的方法,而Rocchio和KNN是基于向量的相似度计算的方法。选用X2作为文本特征选取方法,对一个中文文本分类语料库进行分类评测。实验结果表明,最大熵和Naive Bayes的分类性能十分接近,处于较好水平,而KNN和Rocchio分类性能稍差一些。 相似文献
16.
支持向量机增量学习算法综述 总被引:2,自引:0,他引:2
支持向量机增量学习算法,有效的解决了因数据集庞大而引起的内存不足问题,改善了因出现新样本而造成原分类器分类精度降低、分类时间延长的局面。本文阐述了几种具有代表性的增量学习算法,比较了它们的优缺点,给出了进一步的研究方向。 相似文献
17.
《天津理工大学学报》2016,(2):36-39
SAR图像分类是实现SAR图像理解和解译的关键步骤,本文将显著性检测、主动学习和支持向量机分类技术相结合,提出基于显著性主动学习的SAR图像分类算法.该算法首先将基于卷积和下采样得到不同尺度的SAR图像;然后对各尺度SAR图像进行显著性检测,分为显著性区域与非显著性区域,最后对区域内像素提取特征,并由基于支持向量机的主动学习方法进行分类.实验结果表明:本文提出的方法极大提高了支持向量机分类的精度和效率. 相似文献
18.
基于机器学习的文本分类方法综述 总被引:1,自引:0,他引:1
文本分类是信息检索与数据挖掘领域的核心技术,是机器学习领域新的研究热点。本文对现有的基于机器学习的文本分类方法进行了详细的介绍,分析了各种方法的优缺点,并阐述了文本分类方法未来的发展趋势。 相似文献
19.
An image and video quality assessment method was developed using neural network and support vector machines (SVM) with the peak signal to noise ratio (PSNR) and the structure similarity indexes used to describe image quality. The neural network was used to obtain the mapping functions between the objective quality assessment indexes and subjective quality assessment. The SVM was used to classify the images into different types which were accessed using different mapping functions. Video quality was assessed based on the quality of each frame in the video sequence with various weights to describe motion and scene changes in the video. The number of isolated points in the correlations of the image and video subjective and objective quality assessments was reduced by this method. Simulation results show that the method accurately accesses image quality. The monotonicity of the method for images is 6.94% higher than with the PSNR method, and the root mean square error is at least 35.90% higher than with the PSNR. 相似文献
20.
支持向量机(Support Vector Machine,SVM)是机器学习领域的最新成果,它有较强的泛化能力,收敛快以及低复杂度等优点.本文通过对训练样本进行数据格式的转化,继而转化为libsvm和lssvm分类所要求的数据格式.然后在上行波束成形中使用SVM算法,提高空域滤波的分辨率,仿真结果显示:与LMS(LeastMean Squares,最小均方值,又叫随机梯度下降法)、MMSE(Minimum Mean-Square Error,最小均方误差)经典算法相比,误码率有了明显改善. 相似文献