首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
X-linked dominant Conradi-Hünermann syndrome (CDPX2; MIM 302960) is one of a group of disorders with aberrant punctate calcification in cartilage, or chondrodysplasia punctata (CDP). This is most prominent around the vertebral column, pelvis and long bones in CPDX2. Additionally, CDPX2 patients may have asymmetric rhizomesomelia, sectorial cataracts, patchy alopecia, ichthyosis and atrophoderma. The phenotype in CDPX2 females ranges from stillborn to mildly affected individuals identified in adulthood. CDPX2 is presumed lethal in males, although a few affected males have been reported. We found increased 8(9)-cholestenol and 8-dehydrocholesterol in tissue samples from seven female probands with CDPX2 (ref. 4). This pattern of accumulated cholesterol intermediates suggested a deficiency of 3beta-hydroxysteroid-delta8,delta7-isomerase (sterol-delta8-isomerase), which catalyses an intermediate step in the conversion of lanosterol to cholesterol. A candidate gene encoding a sterol-delta8-isomerase (EBP) has been identified and mapped to Xp11.22-p11.23 (refs 5,6). Using SSCP analysis and sequencing of genomic DNA, we found EBP mutations in all probands. We confirmed the functional significance of two missense alleles by expressing them in a sterol-delta8-isomerase-deficient yeast strain. Our results indicate that defects in sterol-delta8-isomerase cause CDPX2 and suggest a role for sterols in bone development.  相似文献   

2.
X-linked hypohidrotic ectodermal dysplasia results in abnormal morphogenesis of teeth, hair and eccrine sweat glands. The gene (ED1) responsible for the disorder has been identified, as well as the analogous X-linked gene (Ta) in the mouse. Autosomal recessive disorders, phenotypically indistinguishable from the X-linked forms, exist in humans and at two separate loci (crinkled, cr, and downless, dl) in mice. Dominant disorders, possibly allelic to the recessive loci, are seen in both species (ED3, Dlslk). A candidate gene has recently been identified at the dl locus that is mutated in both dl and Dlslk mutant alleles. We isolated and characterized its human DL homologue, and identified mutations in three families displaying recessive inheritance and two with dominant inheritance. The disorder does not map to the candidate gene locus in all autosomal recessive families, implying the existence of at least one additional human locus. The putative protein is predicted to have a single transmembrane domain, and shows similarity to two separate domains of the tumour necrosis factor receptor (TNFR) family.  相似文献   

3.
Idiopathic congenital nystagmus is characterized by involuntary, periodic, predominantly horizontal oscillations of both eyes. We identified 22 mutations in FRMD7 in 26 families with X-linked idiopathic congenital nystagmus. Screening of 42 singleton cases of idiopathic congenital nystagmus (28 male, 14 females) yielded three mutations (7%). We found restricted expression of FRMD7 in human embryonic brain and developing neural retina, suggesting a specific role in the control of eye movement and gaze stability.  相似文献   

4.
Inherited retinal diseases are a common cause of visual impairment in children and young adults, often resulting in severe loss of vision in later life. The most frequent form of inherited retinopathy is retinitis pigmentosa (RP), with an approximate incidence of 1 in 3,500 individuals worldwide. RP is characterized by night blindness and progressive degeneration of the midperipheral retina, accompanied by bone spicule-like pigmentary deposits and a reduced or absent electroretinogram (ERG). The disease process culminates in severe reduction of visual fields or blindness. RP is genetically heterogeneous, with autosomal dominant, autosomal recessive and X-linked forms. Here we have identified two mutations in a novel retina-specific gene from chromosome 8q that cause the RP1 form of autosomal dominant RP in three unrelated families. The protein encoded by this gene is 2,156 amino acids and its function is currently unknown, although the amino terminus has similarity to that of the doublecortin protein, whose gene (DCX) has been implicated in lissencephaly in humans. Two families have a nonsense mutation in codon 677 of this gene (Arg677stop), whereas the third family has a nonsense mutation in codon 679 (Gln679stop). In one family, two individuals homozygous for the mutant gene have more severe retinal disease compared with heterozygotes.  相似文献   

5.
The hereditary spastic paraplegias (HSPs; Strümpell-Lorrain syndrome, MIM number 18260) are a diverse class of disorders characterized by insidiously progressive lower-extremity spastic weakness (reviewed in refs. 1-3). Eight autosomal dominant HSP (ADHSP) loci have been identified, the most frequent of which is that linked to the SPG4 locus on chromosome 2p22 (found in approximately 42%), followed by that linked to the SPG3A locus on chromosome 14q11-q21 (in approximately 9%). Only SPG4 has been identified as a causative gene in ADHSP. Its protein (spastin) is predicted to participate in the assembly or function of nuclear protein complexes. Here we report the identification of mutations in a newly identified GTPase gene, SPG3A, in ADHSP affected individuals.  相似文献   

6.
We identified four girls with a consistent constellation of facial dysmorphism and malformations previously reported in a single mother-daughter pair. Toe syndactyly, telecanthus and anogenital and renal malformations were present in all affected individuals; thus, we propose the name 'STAR syndrome' for this disorder. Using array CGH, qPCR and sequence analysis, we found causative mutations in FAM58A on Xq28 in all affected individuals, suggesting an X-linked dominant inheritance pattern for this recognizable syndrome.  相似文献   

7.
Light is a dominant mutant allele of the mouse brown locus which results in hairs pigmented only at their tips. The phenotype is due to premature melanocyte death. We have sequenced the tyrosinase-related protein-1 cDNA encoded at this locus from Light mice and found that it contains a single base alteration from wild-type, causing an Arg to Cys change in the protein. To further elucidate the mutant phenotype, we studied the expression of melanocyte specific genes in the skin of Light mice. We have demonstrated premature melanocyte death, but only in pigmented mice, indicating that the cell death is mediated through the inherent cytotoxicity of pigment production.  相似文献   

8.
Mental retardation and epilepsy often occur together. They are both heterogeneous conditions with acquired and genetic causes. Where causes are primarily genetic, major advances have been made in unraveling their molecular basis. The human X chromosome alone is estimated to harbor more than 100 genes that, when mutated, cause mental retardation. At least eight autosomal genes involved in idiopathic epilepsy have been identified, and many more have been implicated in conditions where epilepsy is a feature. We have identified mutations in an X chromosome-linked, Aristaless-related, homeobox gene (ARX), in nine families with mental retardation (syndromic and nonspecific), various forms of epilepsy, including infantile spasms and myoclonic seizures, and dystonia. Two recurrent mutations, present in seven families, result in expansion of polyalanine tracts of the ARX protein. These probably cause protein aggregation, similar to other polyalanine and polyglutamine disorders. In addition, we have identified a missense mutation within the ARX homeodomain and a truncation mutation. Thus, it would seem that mutation of ARX is a major contributor to X-linked mental retardation and epilepsy.  相似文献   

9.
Rab3a is the most abundant Rab (ras-associated binding) protein in the brain and has a regulatory role in synaptic vesicle trafficking. Mice with a targeted loss-of-function mutation in Rab3a have defects in Ca(2+)-dependent synaptic transmission: the number of vesicles released in response to an action potential is greater than in wildtype mice, resulting in greater synaptic depression and the abolishment of CA3 mossy-fiber long term potentiation. The effect of these changes on behavior is unknown. In a screen for mouse mutants with abnormal rest-activity and sleep patterns, we identified a semidominant mutation, called earlybird, that shortens the circadian period of locomotor activity. Sequence analysis of Rab3a identified a point mutation in the conserved amino acid (Asp77Gly) within the GTP-binding domain of this protein in earlybird mutants, resulting in significantly reduced levels of Rab3a protein. Phenotypic assessment of earlybird mice and a null allele of Rab3a revealed anomalies in circadian period and sleep homeostasis, providing evidence that Rab3a-mediated synaptic transmission is involved in these behaviors.  相似文献   

10.
Cayman ataxia is a recessive congenital ataxia restricted to one area of Grand Cayman Island. Comparative mapping suggested that the locus on 19p13.3 associated with Cayman ataxia might be homologous to the locus on mouse chromosome 10 associated with the recessive ataxic mouse mutant jittery. Screening genes in the region of overlap identified mutations in a novel predicted gene in three mouse jittery alleles, including the first mouse mutation caused by an Alu-related (B1 element) insertion. We found two mutations exclusively in all individuals with Cayman ataxia. The gene ATCAY or Atcay encodes a neuron-restricted protein called caytaxin. Caytaxin contains a CRAL-TRIO motif common to proteins that bind small lipophilic molecules. Mutations in another protein containing a CRAL-TRIO domain, alpha-tocopherol transfer protein (TTPA), cause a vitamin E-responsive ataxia. Three-dimensional protein structural modeling predicts that the caytaxin ligand is more polar than vitamin E. Identification of the caytaxin ligand may help develop a therapy for Cayman ataxia.  相似文献   

11.
To further our understanding of initiation and imprinting of X-chromosome inactivation, we have examined methylation of specific CpG sites of X-linked Pgk-1 and G6pd genes throughout female mouse development. Methylation occurs around the time of inactivation and earlier for Pgk-1, which is closer to the X-inactivation centre. In female primordial germ cells, the inactive X chromosome escapes methylation; this may underly the reversibility of inactivation at meiosis. Similarly, the genes are unmethylated on the inactive X chromosome in sperm; hence, the imprint specifying preferential X-inactivation in extra-embryonic tissues must reside elsewhere.  相似文献   

12.
Expansion of the trinucleotide repeat (CAG)n in the first exon of the androgen receptor gene is associated with a rare motor neuron disorder, X-linked spinal and bulbar muscular atrophy. We have found that expanded (CAG)n alleles undergo alteration in length when transmitted from parent to offspring. Of 45 meioses examined, 12 (27%) demonstrated a change in CAG repeat number. Both expansions and contractions were observed, although their magnitude was small. There was a greater rate of instability in male meiosis than in female meiosis. We also found evidence for a correlation between disease severity and CAG repeat length, but other factors seem to contribute to the phenotypic variability in this disorder.  相似文献   

13.
14.
Dysfunction of the exocrine pancreas is observed in diabetes, but links between concurrent exocrine and endocrine pancreatic disease and contributing genetic factors are poorly characterized. We studied two families with diabetes and exocrine pancreatic dysfunction by genetic, physiological and in vitro functional studies. A genome-wide screen in Family 1 linked diabetes to chromosome 9q34 (maximal lod score 5.07). Using fecal elastase deficiency as a marker of exocrine pancreatic dysfunction refined the critical chromosomal region to 1.16 Mb (maximal lod score 11.6). Here, we identified a single-base deletion in the variable number of tandem repeats (VNTR)-containing exon 11 of the carboxyl ester lipase (CEL) gene, a major component of pancreatic juice and responsible for the duodenal hydrolysis of cholesterol esters. Screening subjects with maturity-onset diabetes of the young identified Family 2, with another single-base deletion in CEL and a similar phenotype with beta-cell failure and pancreatic exocrine disease. The in vitro catalytic activities of wild-type and mutant CEL protein were comparable. The mutant enzyme was, however, less stable and secreted at a lower rate. Furthermore, we found some evidence for an association between common insertions in the CEL VNTR and exocrine dysfunction in a group of 182 unrelated subjects with diabetes (odds ratio 4.2 (1.6, 11.5)). Our findings link diabetes to the disrupted function of a lipase in the pancreatic acinar cells.  相似文献   

15.
Muscle contraction results from the force generated between the thin filament protein actin and the thick filament protein myosin, which causes the thick and thin muscle filaments to slide past each other. There are skeletal muscle, cardiac muscle, smooth muscle and non-muscle isoforms of both actin and myosin. Inherited diseases in humans have been associated with defects in cardiac actin (dilated cardiomyopathy and hypertrophic cardiomyopathy), cardiac myosin (hypertrophic cardiomyopathy) and non-muscle myosin (deafness). Here we report that mutations in the human skeletal muscle alpha-actin gene (ACTA1) are associated with two different muscle diseases, 'congenital myopathy with excess of thin myofilaments' (actin myopathy) and nemaline myopathy. Both diseases are characterized by structural abnormalities of the muscle fibres and variable degrees of muscle weakness. We have identified 15 different missense mutations resulting in 14 different amino acid changes. The missense mutations in ACTA1 are distributed throughout all six coding exons, and some involve known functional domains of actin. Approximately half of the patients died within their first year, but two female patients have survived into their thirties and have children. We identified dominant mutations in all but 1 of 14 families, with the missense mutations being single and heterozygous. The only family showing dominant inheritance comprised a 33-year-old affected mother and her two affected and two unaffected children. In another family, the clinically unaffected father is a somatic mosaic for the mutation seen in both of his affected children. We identified recessive mutations in one family in which the two affected siblings had heterozygous mutations in two different exons, one paternally and the other maternally inherited. We also identified de novo mutations in seven sporadic probands for which it was possible to analyse parental DNA.  相似文献   

16.
Mouse chromosome 10 harbors several loci associated with hearing loss, including waltzer (v), modifier-of deaf waddler (mdfw) and Age-related hearing loss (Ahl). The human region that is orthologous to the mouse 'waltzer' region is located at 10q21-q22 and contains the human deafness loci DFNB12 and USH1D). Numerous mutations at the waltzer locus have been documented causing erratic circling and hearing loss. Here we report the identification of a new gene mutated in v. The 10.5-kb Cdh23 cDNA encodes a very large, single-pass transmembrane protein, that we have called otocadherin. It has an extracellular domain that contains 27 repeats; these show significant homology to the cadherin ectodomain. In v(6J), a GT transversion creates a premature stop codon. In v(Alb), a CT exchange generates an ectopic donor splice site, effecting deletion of 119 nucleotides of exonic sequence. In v(2J), a GA transition abolishes the donor splice site, leading to aberrant splice forms. All three alleles are predicted to cause loss of function. We demonstrate Cdh23 expression in the neurosensory epithelium and show that during early hair-cell differentiation, stereocilia organization is disrupted in v(2J) homozygotes. Our data indicate that otocadherin is a critical component of hair bundle formation. Mutations in human CDH23 cause Usher syndrome type 1D and thus, establish waltzer as the mouse model for USH1D.  相似文献   

17.
Hyperimmunoglobulinaemia D and periodic fever syndrome (HIDS; MIM 260920) is a rare, apparently monogenic, autosomal recessive disorder characterized by recurrent episodes of fever accompanied with lymphadenopathy, abdominal distress, joint involvement and skin lesions. All patients have high serum IgD values (>100 U/ml) and HIDS 'attacks' are associated with an intense acute phase reaction whose exact pathophysiology remains obscure. Two other hereditary febrile disorders have been described. Familial Mediterranean fever (MIM 249100) is an autosomal recessive disorder affecting mostly populations from the Mediterranean basin and is caused by mutations in the gene MEFV (refs 5,6). Familial Hibernian fever (MIM 142680), also known as autosomal dominant familial recurrent fever, is caused by missense mutations in the gene encoding type I tumour necrosis factor receptor. Here we perform a genome-wide search to map the HIDS gene. Haplotype analysis placed the gene at 12q24 between D12S330 and D12S79. We identified the gene MVK, encoding mevalonate kinase (MK, ATP:mevalonate 5-phosphotransferase; EC 2.7.1.36), as a candidate gene. We characterized 3 missense mutations, a 92-bp loss stemming from a deletion or from exon skipping, and the absence of expression of one allele. Functional analysis demonstrated diminished MK activity in fibroblasts from HIDS patients. Our data establish MVK as the gene responsible for HIDS.  相似文献   

18.
We demonstrate here the importance of interleukin signalling pathways in cognitive function and the normal physiology of the CNS. Thorough investigation of an MRX critical region in Xp22.1-21.3 enabled us to identify a new gene expressed in brain that is responsible for a non-specific form of X-linked mental retardation. This gene encodes a 696 amino acid protein that has homology to IL-1 receptor accessory proteins. Non-overlapping deletions and a nonsense mutation in this gene were identified in patients with cognitive impairment only. Its high level of expression in post-natal brain structures involved in the hippocampal memory system suggests a specialized role for this new gene in the physiological processes underlying memory and learning abilities.  相似文献   

19.
The alymphoplasia (aly) mutation of mouse is autosomal recessive and characterized by the systemic absence of lymph nodes (LN) and Peyer's patches (PP) and disorganized splenic and thymic structures with immunodeficiency. Although recent reports have shown that the interaction between lymphotoxin (LT) and the LT beta-receptor (Ltbeta r, encoded by Ltbr) provides a critical signal for LN genesis in mice, the aly locus on chromosome 11 is distinct from those for LT and its receptor. We found that the aly allele carries a point mutation causing an amino acid substitution in the carboxy-terminal interaction domain of Nf-kappa b-inducing kinase (Nik, encoded by the gene Nik). Transgenic complementation with wild-type Nik restored the normal structures of LN, PP, spleen and thymus, and the normal immune response in aly/aly mice. In addition, the aly mutation in a kinase domain-truncated Nik abolished its dominant-negative effect on Nf-kappa b activation induced by an excess of Ltbeta r. Our observations agree with previous reports that Ltbeta r-deficient mice showed defects in LN genesis and that Nik is a common mediator of Nf-kappa b activation by the tumour necrosis factor (TNF) receptor family. Nik is able to interact with members of the TRAF family (Traf1, 2, 3, 5 and 6), suggesting it acts downstream of TRAF-associating receptor signalling pathways, including Tnfr, Cd40, Cd30 and Ltbeta r. The phenotypes of aly/aly mice are more severe than those of Ltbr-/- mice, however, indicating involvement of Nik in signal transduction mediated by other receptors.  相似文献   

20.
The autosomal dominant, giant-platelet disorders, May-Hegglin anomaly (MHA; MIM 155100), Fechtner syndrome (FTNS; MIM 153640) and Sebastian syndrome (SBS), share the triad of thrombocytopenia, large platelets and characteristic leukocyte inclusions ('D?hle-like' bodies). MHA and SBS can be differentiated by subtle ultrastructural leukocyte inclusion features, whereas FTNS is distinguished by the additional Alport-like clinical features of sensorineural deafness, cataracts and nephritis. The similarities between these platelet disorders and our recent refinement of the MHA (ref. 6) and FTNS (ref. 7) disease loci to an overlapping region of 480 kb on chromosome 22 suggested that all three disorders are allelic. Among the identified candidate genes is the gene encoding nonmuscle myosin heavy chain 9 (MYH9; refs 8-10), which is expressed in platelets and upregulated during granulocyte differentiation. We identified six MYH9 mutations (one nonsense and five missense) in seven unrelated probands from MHA, SBS and FTNS families. On the basis of molecular modelling, the two mutations affecting the myosin head were predicted to impose electrostatic and conformational changes, whereas the truncating mutation deleted the unique carboxy-terminal tailpiece. The remaining missense mutations, all affecting highly conserved coiled-coil domain positions, imparted destabilizing electrostatic and polar changes. Thus, our results suggest that mutations in MYH9 result in three megakaryocyte/platelet/leukocyte syndromes and are important in the pathogenesis of sensorineural deafness, cataracts and nephritis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号