共查询到17条相似文献,搜索用时 109 毫秒
1.
初日辉 《徐州师范大学学报(自然科学版)》2014,(2)
对带五次项的非线性Schrdinger方程提出了一个紧致差分格式,使格式的收敛阶达到O(τ2+h4).运用能量的方法证明了离散的守恒律,并证明了差分格式的稳定性与收敛性.数值实验结果验证了理论的证明. 相似文献
2.
对一维复Ginzburg-Landau方程的周期初值问题提出了一个非线性的紧致差分格式.在讨论了解的先验估计的基础上,证明了此格式以L∞范数无条件稳定且收敛于O(τ2+h4),数值实验结果验证了理论的正确性. 相似文献
3.
对一类带五次项的非线性Schr dinger方程的初边值问题提出了一个带参数θ的守恒差分格式,并且在先验估计的基础上,证明了差分格式以阶O(h2 2τ)收敛稳定. 相似文献
4.
对RLW方程提出一个高精度守恒紧致差分格式,所建格式满足离散质量守恒和能量守恒,在时间上为二阶精度,在空间上为四阶精度.用离散能量法证明了所建格式的收敛性和稳定性.数值实验验证了该格式的有效性和可靠性. 相似文献
5.
对一类带五次项的非线性Schr?dinger方程的初边值问题提出了一个带参数θ的守恒差分格式,并且在先验估计的基础上,证明了差分格式以阶O(h2 τ2)收敛稳定. 相似文献
6.
对一维变系数的对流扩散方程提出了一个紧致差分格式,从而将格式的收敛阶提高为O(τ2+h4),通过Fourier级数的方法和Lax等价性定理证明了差分格式的稳定性和收敛性,数值实验结果很好地验证了理论的正确性. 相似文献
7.
带五次项的非线性Schr(o)dinger方程的一个守恒差分格式 总被引:1,自引:0,他引:1
对一类带五次项的非线性Schr(o)dinger方程的初边值问题提出了一个带参数θ的守恒差分格式,并且在先验估计的基础上,证明了差分格式以阶O(h2+τ2)收敛稳定. 相似文献
8.
构造了一个新的紧致差分格式对 Klein-Gordon-Schrodinger(KGS)耦合方程的周期边值问题进行数值研究,该格式是非耦合且线性的,因此具有更快的计算速度,且便于并行计算。同时讨论了该格式的守恒性质,并在先验估计的基础上运用能量方法分析了差分格式的收敛性,收敛阶是 O(τ^2+h4)。数值实验也证明了该格式的有效性。 相似文献
9.
作者对一维半线性色散耗散波动方程建立了一类紧致差分格式,讨论了差分解的存在唯一性,分析了该格式的收敛性、稳定性,得到了收敛阶为O(τ2+h4).数值试验验证了方法的有效性. 相似文献
10.
胡劲松 《云南大学学报(自然科学版)》2010,32(1):1-5
对Benjamin-Bona-Mahony(BBM)方程的初边值问题进行了数值研究,提出了一个3层拟紧致隐式差分格式,讨论了差分解的存在唯一性,并利用离散泛函分析方法分析了该格式的二阶收敛性与稳定性,并利用数值实验进行了验证.
相似文献
11.
研究求解一维Fisher-Kolmogorov方程的高精度差分格式,给出了三层线性化紧差分格式,证明了解的存在唯一性及在L"范数下时间方向二阶收敛,空间方向四阶收敛.最后通过数值算例,验证差分格式是有效的. 相似文献
12.
本文对带有阻尼项的耗散SRLW方程的初边值问题进行了数值方法研究,提出了一个具有二阶理论精度的三层非耦合线性化差分格式,由于该格式解除了原方程中函数 和 的耦合关系,数值求解时只需对函数 和 分别单独求解,其中对函数 的数值求解为线性化差分算法,对函数 的数值求解为显式差分算法直接求解,从而大大提高了数值求解效率。在不能得到其差分解最大模估计的情况下,综合运用数学归纳法和离散泛函分析方法,直接证明了格式的收敛性和稳定性。数值实验表明该方法是可靠的. 相似文献
13.
Burgers方程的一个新的差分格式 总被引:1,自引:0,他引:1
盛秀兰 《徐州师范大学学报(自然科学版)》2012,30(2):39-43
研究Burgers方程初边值问题的差分方法.首先基于Crank-Nicolson方法,通过对非线性项uux的线性化处理,建立了一个两层线性化隐式差分格式,并讨论了差分格式的可解性.其次利用离散能量估计方法证明了差分解在最大模意义下关于时间和空间的二阶收敛性.最后通过数值算例验证了理论分析结果. 相似文献
14.
本文对带有齐次边界条件的Rosenau-KdV-RLW方程的初边值问题进行了数值研究,提出了一个具有二阶理论精度的三层线性化差分格式,证明了差分解的存在唯一性. 尽管无法得到差分解的最大模估计,本文仍然综合运用数学归纳法和离散泛函分析方法证明了该格式的收敛性和稳定性.数值实验表明该方法是可靠的. 相似文献
15.
对二维Kuramoto-Tsuzuki方程混合初边值问题建立了线性化Grank-Nicolson格式,证明了差分格式解存在的唯一性、收敛性,并证明了收敛阶为O(τ+h2)。 相似文献
16.
本文从差分角度对三维helmholtz方程进行离散,得到相应的紧差分格式,并通过数值实验表明,快速算法对该格式具有良好的适用性. 相似文献
17.
本文对一类带有齐次边界条件的广义Rosenau-KdV-RLW方程的初边值问题进行了数值研究,提出了一个两层非线性Crank-Nicolson差分格式,格式合理地模拟了原问题的两个守恒性质.然后,本文证明了差分解的存在唯一性,并利用能量方法分析了该格式的二阶收敛性与无条件稳定性.数值实验表明该方法是可靠的. 相似文献