首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A class I histocompatibility gene, H-2Kb, linked to the rat insulin promoter, is overexpressed in the pancreatic beta cells of transgenic mice. The mice, whether syngeneic or allogeneic to the transgene, develop insulin dependent diabetes without detectable T cell infiltration, suggesting a direct, non-immune role for the transgenic class I molecules in the disease process.  相似文献   

2.
T Spies  R DeMars 《Nature》1991,351(6324):323-324
Cytotoxic T lymphocytes recognize antigen-derived peptides bound to major histocompatibility complex (MHC) class I molecules with which they assemble in the endoplasmic reticulum or in an undefined subcompartment. There is genetic evidence that the peptides that are products of cytosolic protein degradation are transported into this compartment by a peptide supply factor (PSF), encoded in the MHC class II region. Like the corresponding genes RING4, HAM1 and mtp1, PSF is related to the multidrug-resistance family of transporters and may be a peptide pump, as translocation of peptides across membranes must occur independently of the secretory pathway. There is, however, no functional evidence for this role so far. Here we report gene transfer experiments showing that expression of PSF complementary DNA in the human lymphoblastoid cell line mutant 721.134 restores normal levels of surface HLA-A2 and -B5. No similar effect was observed in 721.174 mutant cells, in which a homozygous deletion includes PSF among several other closely linked genes. At least one of these genes may therefore also be required for PSF function.  相似文献   

3.
K Falk  O R?tzschke  H G Rammensee 《Nature》1990,348(6298):248-251
Major histocompatibility complex (MHC) class I molecules present peptides derived from cellular proteins to cytotoxic T lymphocytes (CTLs), which check these peptides for abnormal features. How such peptides arise in the cell is not known. Here we show that the MHC molecules themselves are substantially involved in determining which peptides occur intracellularly: normal mouse spleen cells identical at all genes but MHC class I express different patterns of peptides derived from cellular non-MHC proteins. We suggest several models to explain this influence of MHC class I molecules on cellular peptide composition.  相似文献   

4.
P Machy  A Truneh  D Gennaro  S Hoffstein 《Nature》1987,328(6132):724-726
Endocytosis of the major histocompatibility complex (MHC)-encoded class I and class II molecules has been the subject of recent investigations. Class I molecules, which are key elements in T cell-mediated cytotoxicity, are differentially endocytosed by different cell types. Fibroblasts internalize their class I molecules via uncoated cell surface vesicles and tubular invaginations when these molecules are cross-linked with multivalent ligands. T lymphocytes internalize their class I molecules spontaneously, but B lymphocytes do not internalize them at all. Here we describe a morphological investigation of the mechanism by which class I molecules are endocytosed by T lymphocytes. We show that, unlike fibroblasts, T lymphocytes spontaneously internalize 20-40% of their class I molecules in a process involving coated pits and coated vesicles. Thus, the endocytic pathway of class I molecules in T lymphocytes is similar to those of other more classical cell-surface receptors involved in receptor-mediated endocytosis. In contrast, the same class I molecules remained on the cell surface in B lymphocytes. These data show that class I molecules are differentially regulated in T and B lymphocytes and fibroblasts.  相似文献   

5.
Self versus non-self discrimination is a central theme in biology from plants to vertebrates, and is particularly relevant for lymphocytes that express receptors capable of recognizing self-tissues and foreign invaders. Comprising the third largest lymphocyte population, natural killer (NK) cells recognize and kill cellular targets and produce pro-inflammatory cytokines. These potentially self-destructive effector functions can be controlled by inhibitory receptors for the polymorphic major histocompatibility complex (MHC) class I molecules that are ubiquitously expressed on target cells. However, inhibitory receptors are not uniformly expressed on NK cells, and are germline-encoded by a set of polymorphic genes that segregate independently from MHC genes. Therefore, how NK-cell self-tolerance arises in vivo is poorly understood. Here we demonstrate that NK cells acquire functional competence through 'licensing' by self-MHC molecules. Licensing involves a positive role for MHC-specific inhibitory receptors and requires the cytoplasmic inhibitory motif originally identified in effector responses. This process results in two types of self-tolerant NK cells--licensed or unlicensed--and may provide new insights for exploiting NK cells in immunotherapy. This self-tolerance mechanism may be more broadly applicable within the vertebrate immune system because related germline-encoded inhibitory receptors are widely expressed on other immune cells.  相似文献   

6.
S Krishna  P Benaroch  S Pillai 《Nature》1992,357(6374):164-167
Purified major histocompatibility complex (MHC) class I molecules have been studied at high resolution by X-ray crystallography; the structure is a complex of a single heavy chain, a beta 2-microglobulin light chain and a tightly bound peptide moiety. We show here that complete MHC class I molecules are post-translationally assembled into tetramers (made up of four heavy chains and four beta 2-microglobulin units) and that this tetrameric species is expressed on the cell surface. The multivalent tetrameric structure of class I molecules can be reconciled with models of T-cell activation that invoke antigen-receptor crosslinking, as opposed to models that depend on an allosteric change.  相似文献   

7.
Traffic of MHC molecules dictates the source of peptides that are presented to T cells. The intracellular distribution of MHC class I and class II molecules reflects the dichotomy in presentation of antigen from endogenous and exogenous origin, respectively. In human B lymphoblastoid cells, class I molecules are present in compartments constituting the biosynthetic pathway, whereas class II molecules enter structures related to lysosomes during their biosynthesis.  相似文献   

8.
Synthetic peptides have been used to sensitize target cells and thereby screen for epitopes recognized by T cells. Most epitopes of cytotoxic T lymphocytes can be mimicked by synthetic peptides of 12-15 amino acids. Although in specific cases, truncations of peptides improves sensitization of target cells, no optimum length for binding to major histocompatibility complex (MHC) class I molecules has been defined. We have now analysed synthetic peptide captured by empty MHC class I molecules of the mutant cell line RMA-S. We found that class I molecules preferentially bound short peptides (nine amino acids) and selectively bound these peptides even when they were a minor component in a mixture of longer peptides. These results may help to explain the difference in size restriction of T-cell epitopes between experiments with synthetic peptides and those with naturally processed peptides.  相似文献   

9.
Tolerance of class I histocompatibility antigens expressed extrathymically   总被引:24,自引:0,他引:24  
G Morahan  J Allison  J F Miller 《Nature》1989,339(6226):622-624
Although convincing evidence has been obtained for the imposition of self-tolerance by the intrathymic deletion of self-reactive T cells, the development of tolerance to antigens which are expressed only in the periphery is not so well understood. We have approached this question by creating transgenic mice which carry a class I major histocompatibility complex (MHC) gene (H-2Kb) linked to the rat insulin promoter. Mice expressing the transgene develop diabetes, but do not appear to mount an immune response against the transgene-expressing pancreatic beta-cells, even when the transgene is allogeneic with respect to the endogenous host H-2 antigens. We have now explored the mechanism of this tolerance further. We find that spleen cells from pre-diabetic transgenic (RIP-Kb) mice do not kill targets bearing H-2Kb, whereas thymus cells from the same mice do. The unresponsiveness of these spleen cells can be reversed in vitro by providing recombinant interleukin-2 (rIL-2). In older, diabetic mice, responsiveness develops as the pancreatic beta-cells are lost. Our results point to an extrathymic mechanism of tolerance induction, dependent on the continuous presence of antigen and the lack of IL-2 in the local environment of potentially reactive T cells.  相似文献   

10.
The major histocompatibility complex(MHC)of proteins that exists in all vertebrates is encoded by a cluster of genes associated with the immune response and related functions.MHC is divided into MHC I,II,and III;MHC I is involved in antigenic presentation,binding T cell receptors,and leading ultimately to specific cellular immune responses.The complicated functions of MHC I are determined by the nature of the complex.The crystal structure of MHC I has been solved for many animals,revealing the relationship between spatial structure and function.MHC I consists of an a heavy chain and a b2m light chain,both ligated non-covalently to a complex when a peptide is bound to the antigenic-binding groove.The a heavy chain is divided into an extracellular domain,a transmembrane domain,and an intracellular domain.The extracellular domain consists of sub-regions a1,a2,and a3.The a1 and a2 together form the antigenic-binding groove and bind antigenic peptides with 8–10 amino acid residues.MHC I can form a stable spatial structure;however,it should be noted that there are differences in the structure of MHC I among animal species,including anchored amino acids in binding peptides,binding sites,molecular distance,crystallization conditions,etc.Here,progress in determination of the crystal structure of human,mouse,chicken,non-human primate,and swine MHC I is described in detail.  相似文献   

11.
L C Burkly  D Lo  O Kanagawa  R L Brinster  R A Flavell 《Nature》1989,342(6249):564-566
T-cell reactivity to the class II major histocompatibility complex I-E antigen is associated with T-cell antigen receptors containing the V beta gene segments V beta 17a and V beta 5. Mice expressing I-E with the normal tissue distribution (on B cells, macrophages, dendritic cells and thymic epithelium) induce tolerance to self I-E by clonal deletion in the thymus. By contrast, we find that transgenic INS-I-E mice that express I-E on pancreatic beta-cells, but not in the thymus or peripheral lymphoid organs, are tolerant to I-E but have not deleted V beta 5- and V beta 17a-bearing T cells. Moreover, whereas T-cell populations from nontransgenic mice proliferate in response to receptor crosslinking with V beta 5- and V beta 17a-specific antibodies, T cells from INS-I-E mice do not. Thus, our experiments provide direct evidence that T-cell tolerance by clonal paralysis does occur during normal T-cell development in vivo.  相似文献   

12.
Regulation of human insulin gene expression in transgenic mice   总被引:1,自引:0,他引:1  
Insulin is a polypeptide hormone of major physiological importance in the regulation of fuel homeostasis in animals (reviewed in refs 1,2). It is synthesized by the beta-cells of pancreatic islets, and circulating insulin levels are regulated by several small molecules, notably glucose, amino acids, fatty acids and certain pharmacological agents. Insulin consists of two polypeptide chains (A and B, linked by disulphide bonds) that are derived from the proteolytic cleavage of proinsulin, generating equimolar amounts of the mature insulin and a connecting peptide (C-peptide). Humans, like most vertebrates, contain one proinsulin gene, although several species, including mice and rats, have two highly homologous insulin genes. We have studied the regulation of serum insulin levels and of insulin gene expression by generating a series of transgenic mice containing the human insulin gene. We report here that the human insulin gene is expressed in a tissue-specific manner in the islets of these transgenic mice, and that serum human insulin levels are properly regulated by glucose, amino acids and tolbutamide, an oral hypoglycaemic agent.  相似文献   

13.
Class II and class I histocompatibility molecules allow T cells to recognize 'processed' polypeptide antigens. The two polypeptide chains of class II molecules, alpha and beta, are each composed of two domains (for review see ref. 6); the N-terminal domains of each, alpha 1 and beta 1, are highly polymorphic and appear responsible for binding peptides at what appears to be a single site and for being recognized by MHC-restricted antigen-specific T cells. Recently, the three-dimensional structure of the foreign antigen binding site of a class I histocompatibility antigen has been described. Because a crystal structure of a class II molecule is not available, we have sought evidence in class II molecules for the structural features observed in the class I binding site by comparing the patterns of conserved and polymorphic residues of twenty-six class I and fifty-four class II amino acid sequences. The hypothetical class II foreign-antigen binding site we present is consistent with mutation experiments and provides a structural framework for proposing peptide binding models to help understand recent peptide binding data.  相似文献   

14.
Structure of the human class I histocompatibility antigen, HLA-A2   总被引:61,自引:0,他引:61  
The class I histocompatibility antigen from human cell membranes has two structural motifs: the membrane-proximal end of the glycoprotein contains two domains with immunoglobulin-folds that are paired in a novel manner, and the region distal from the membrane is a platform of eight antiparallel beta-strands topped by alpha-helices. A large groove between the alpha-helices provides a binding site for processed foreign antigens. An unknown 'antigen' is found in this site in crystals of purified HLA-A2.  相似文献   

15.
Empty MHC class I molecules come out in the cold   总被引:43,自引:0,他引:43  
Major histocompatibility complex (MHC) class I molecules present antigen by transporting peptides from intracellularly degraded proteins to the cell surface for scrutiny by cytotoxic T cells. Recent work suggests that peptide binding may be required for efficient assembly and intracellular transport of MHC class I molecules, but it is not clear whether class I molecules can ever assemble in the absence of peptide. We report here that culture of the murine lymphoma mutant cell line RMA-S at reduced temperature (19-33 degrees C) promotes assembly, and results in a high level of cell surface expression of H-2/beta 2-microglobulin complexes that do not present endogenous antigens, and are labile at 37 degrees C. They can be stabilized at 37 degrees C by exposure to specific peptides known to interact with H-2Kb or Db. Our findings suggest that, in the absence of peptides, class I molecules can assemble but are unstable at body temperature. The induction of such molecules at reduced temperature opens new ways to analyse the nature of MHC class I peptide interactions at the cell surface.  相似文献   

16.
Direct binding of influenza peptides to class I HLA molecules   总被引:15,自引:0,他引:15  
B P Chen  P Parham 《Nature》1989,337(6209):743-745
Activation of T lymphocytes requires the intracellular fragmentation of foreign antigens and their presentation by class I or class II major histocompatibility complex (MHC) glycoproteins. The direct binding of peptides to class II molecules has been demonstrated using equilibrium dialysis, gel filtration and fluorescence energy transfer at planar membranes, and its specificity compared to that of T-cell activation. In contrast, direct binding of peptides to class I molecules has been difficult to detect; although peptide sensitization experiments and the crystallographic structure of HLA-A2 (ref. 9) persuasively argue for its occurrence and importance. Here we describe a gel filtration assay from which we derive direct evidence for selective binding of an influenza matrix peptide to HLA-A2 and for binding of an influenza nucleoprotein peptide to HLA-B37. These two peptides have previously been shown to act respectively as targets for certain HLA-A2 or HLA-B37 restricted influenza-specific cytotoxic T lymphocytes (CTL). In addition we demonstrate binding to some, but not all, HLA allospecificities that cannot present these peptides to CTL. We estimate that less than 0.3% of the HLA molecules present in any given purified preparation were able to bind the added peptides.  相似文献   

17.
T Spies  M Bresnahan  S Bahram  D Arnold  G Blanck  E Mellins  D Pious  R DeMars 《Nature》1990,348(6303):744-747
Major histocompatibility complex (MHC) class I molecules export peptides to the cell surface for surveillance by cytotoxic T lymphocytes. Intracellular peptide binding is critical for the proper assembly and transport of class I molecules. This mechanism is impaired as a result of a non-functional peptide supply factor gene (PSF) in several human mutant cell lines with genomic lesions in the MHC. We have now identified PSF in the MHC class II region by deletion mapping in mutants and chromosome-walking. PSF is homologous to mammalian and bacterial ATP-dependent transport proteins, suggesting that it operates in the intracellular transport of peptides.  相似文献   

18.
M Reitman  E Lee  H Westphal  G Felsenfeld 《Nature》1990,348(6303):749-752
The level of expression of exogenous genes carried by transgenic mice typically varies from mouse to mouse and can be quite low. This behaviour is attributed to the influence of the mouse chromatin near the site of transgene integration. This 'position effect' has been seen in transgenic mice carrying the human beta-globin gene. It was however, abolished when DNase I hypersensitive sites (normally found 65 to 44 kilobases (kb) upstream) were linked to the human beta-globin transgene. Thus, the upstream DNA (previously named a dominant control or locus activation region, now denoted a locus control region) conferred the ability to express human beta-globin at high levels dependent on copy number on every mouse carrying the construct. We report here an investigation of chicken beta A-globin gene expression in transgenic mice. A 4.5-kb fragment carrying the beta A-globin gene and its downstream enhancer, without any far upstream elements, is sufficient to ensure that every transgenic mouse expresses chicken globin messenger RNA at levels proportional to the transgene copy number. Thus the chicken DNA elements that allow position-independent expression can function in mice. In marked contrast to the human beta cluster, these elements are no farther than 2 kb from the gene. The location of the elements within the cluster demonstrates that position independence can be mediated by DNA that does not define a gene cluster boundary.  相似文献   

19.
Tissue-specific expression of rat myosin light-chain 2 gene in transgenic mice   总被引:24,自引:0,他引:24  
M Shani 《Nature》1985,314(6008):283-286
One approach to determining how the differential expression of specific genes is regulated in higher organisms is to introduce cloned copies of the genes (or parts of the genes) into the genomes of individual organisms from the very beginning of their development. The way in which the exogenous genetic information behaves during the development of the experimental organisms can then provide a means of defining the DNA sequences that restrict the expression of the gene to specific cell types and times of development. So far, several different genes have been introduced into the genomes of mice, but in only a few cases have the exogenous genes retained the tissue specificity of expression of the equivalent endogenous genes. I report here that in two out of three 'transgenic' mice carrying copies of the rat gene for skeletal muscle myosin light chain 2, the exogenous gene is expressed specifically in skeletal muscle cells. The sequences contained in the cloned copy of the myosin light-chain 2 gene used in these experiments are thus sufficient to confer a tissue-specific pattern of expression.  相似文献   

20.
In order to clarify the molecular sequences,allelic polymorphism and the tertiary structure of grass carp (Ctenophayngodon idellus) MHC class I,and to further study their relationship with disease resistances,grass carp MHC class I gene (Ctid-MHC I) was cloned from a cDNA library and the allelic polymorphism in the population was investigated.The results showed that most of the variations exist in the peptide-binding domain (PBD) and high polymorphism was identified in the Ctid-MHC I allelic genes from 12 individuals.Based on the genetic distance,Ctid-MHC class I can be classified into 6 types (from Ctid-MHC I-UA to Ctid-MHC I-UF) which were subdivided into 9 lineages (from A to I).Comparison of the Ctid-MHC I among animals and humans showed that the key amino acids of the peptide binding sites are conserved.Analysis of the tertiary structure of the PBD between Grass carp and human crystallographic data of HLA-A2,the variation with insertion or deletion was found in eight regions (A~H).The phylogenetic tree of MHC class I indicates the evolution of MHC class I among grass carp,fish,amphibian,birds,higher vertebrates and humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号