首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为研究泵作透平尾水管压力脉动特性及内部流动机理,采用试验与雷诺时均非定常数值计算相结合的方法,对尾水管内部压力脉动及其上游过流部件对其内部流动特征的影响进行分析,得到不同位置监测点处的压力脉动特征。研究结果表明:蜗壳内压力脉动主频为叶片通过频率,动静干涉作用是引起透平蜗壳内压力脉动的主要原因;由于上游蜗壳内产生的压力脉动传播到叶轮导致叶轮流道内除主频轴频外还存在1个次主频叶频;小流量时尾水管中心区域出现回流现象,但是随着流量的继续增加回流现象逐渐消失;透平尾水管内压力脉动主要为上游蜗壳内压力脉动传播所致,动静干涉作用是其产生的主要原因;随着流量的增加,透平内部压力脉动主频幅值增加,且大流量工况下达到最大值。  相似文献   

2.
透平动叶栅二次流涡系演变及气动特性的数值模拟   总被引:8,自引:0,他引:8  
采用控制容积积分法和协调一致的求解压力耦合方程的半隐算法,数值求解了三维稳态时均N-S方程组,并应用可实现k-ε湍流模型,计算 低展弦比透平叶栅二次流涡系的演变特点及叶栅气动特性。计算结果与现有的试验结果吻合良好,表明所用的数值方法及湍流模型适用于模拟存在复杂涡系的叶栅流动,计算结果表明,与静叶栅相比较,由于动叶栅的折转角较大,且气流膨胀加速程度较小,通道内横向压力梯度对涡系的发展及叶栅的气动特性产生了更为显著的影响,使得马蹄涡压力面分支在叶栅流道进口区域即与端壁上的横向流动相融合,并很快发展成强度较大的通道涡,马蹄涡吸力面分支也会较早地受到通道涡的卷吸而消失,以致叶栅的能量损失显著增大,出口气流角沿高度方向分布也很不均匀。  相似文献   

3.
采用基于切应力输运模型(SST)的尺度自适应模拟方法对离心泵内部流场进行数值计算,研究大流量下动静干涉对内部流动的影响.从叶轮做功着手分析叶轮流道做功、流道表面做功及压力分布情况,进而分析内部流场的变化情况.数值计算结果经过试验验证及网格无关性验证,分析结果表明:在隔舌前部流速大、压力低,当叶轮流道经过该位置时,径向速度增大,流道内压力降低,此时该流道对流体做功减小;当流道旋转经过隔舌进入隔舌下游区域时,蜗壳内压力骤增,处于隔舌下游的叶轮流道过流量减小,压力增大,流道对流体做功增大.  相似文献   

4.
涡轮叶栅非定常流动的PIV实验   总被引:4,自引:0,他引:4  
利用激光粒子图像测速仪(PIV)测量沿叶高平面和叶栅出口速度场的整场信息.实验中,将模拟动叶的圆柱列沿周向依次移动1/4节距,进行叶高平面速度场的测量,查看圆柱尾迹对下游叶栅影响的整场情况;同时研究在不同的相对叶高下,叶片顶部和根部的二次涡会合、脱离情况.研究发现:在较小的相对叶高下叶栅出口二次涡汇合,强度较大;而在较大的相对叶高下二次涡分离.同时,当上游圆柱的相对位置变化时,叶栅流动最高效率对应着圆柱尾迹被输运到下游静叶的前缘附近,最低效率对应着圆柱尾迹被输运到下游静叶的流道中央.  相似文献   

5.
为满足固体推进剂涡轮火箭发动机高负荷、高效率、低展弦比涡轮设计要求,对发动机涡轮进行初步设计.采用哈尔滨工业大学编制的叶型编辑程序,设计单级膨胀近似为4的涡轮动静叶叶型,采用NUMECA软件对所设计的涡轮动静叶流场进行数值计算.结果表明:高膨胀比涡轮动静叶整个流道内均出现超音速流动,采用缩放通道可减小激波损失;静叶出口马赫数较高,产生的尾缘激波与相邻叶栅吸力面相交,使吸力面马赫数波动,产生逆压梯度,增大了流动损失;在动叶中,端壁附面层内二次流沿壁面汇聚到吸力面中部,使吸力面中部损失增大.  相似文献   

6.
基于深海扬矿泵是深海采矿系统的关键设备,泵内部流动较复杂,无法用公式对流体径向力进行理论计算等,采用试验和数值模拟方法对其作用规律以及产生机理进行研究。首先,对泵内流场进行定常数值计算。然后,进行非定常数值计算,得到泵内压力和径向力的时域和频域图。研究结果表明:在对泵内流场进行定常数值计算时,发现扬程、功率和效率的模拟值与试验值较吻合,从而验证了数值模拟方法的可行性;叶轮和导叶的动静干涉是泵内产生压力脉动和不平衡径向力的重要原因;泵内压力和径向力均呈周期性脉动;叶轮内的压力脉动周期和主频与导叶的叶片数相关,导叶内的压力脉动周期和主频与叶轮叶片数相关,而两者的径向力脉动周期和主频则均与叶轮叶片数相关。  相似文献   

7.
为研究不同开度下混流式水泵水轮机流道内的压力脉动,采用Realizable k-ε湍流模型,进行了某模型水泵水轮机飞逸工况7个不同开度下的全流道三维非定常数值计算,并与实验结果进行对比,分析了其各区域压力脉动幅值和频率.结果表明:随着开度的增大,转速上升,水泵水轮机流道内的压力脉动幅值有所升高,增大到一定程度后会引起蜗壳内流动特性的改变;中间开度21 mm时活动导叶转轮区域及尾水管内压力脉动主频较其余两开度高而幅值有所降低;尾水管中压力脉动主频具有传递性且幅值随流动方向增大.  相似文献   

8.
离心泵内部非定常空化流动特征的数值分析   总被引:2,自引:0,他引:2  
运用完整空化模型和混合流体两相流模型,对比转数为130的离心泵流道内部的空化流动进行了定常及非定常的数值模拟.预测了叶轮流道内空化发生部位和发展程度,对蜗壳隔舌附近处流场的压力场进行了监测,得到了压力脉动的变化规律.结果表明:空化初生位于叶片背面进口边附近处,随着进口压力的降低,空泡分布区域及空泡体积分数不断扩大,当空化严重时,叶片工作面上会有空泡聚集;在叶轮的1个旋转周期中,单个叶片表面上的空化发展程度随叶轮与蜗壳相对位置的改变而发生规律性的变化;压力脉动频率存在明显离散特性,叶片通过频率下的脉动幅值较大;随着空化程度的发展,空化流动诱导泵流道内压力脉动幅值不断增加,并且两者存在相互对应关系.  相似文献   

9.
喷水推进泵压力脉动特性数值计算及分析   总被引:1,自引:0,他引:1  
针对喷水推进器装船后不均匀来流对压力脉动特性的影响,以某巡逻艇喷水推进混流泵为研究对象,基于RANS方程和SST湍流模型,通过流体动力学软件CFX稳态计算,进行了巡逻艇航速数值预报,所得计算值与试航值误差为1.8%,从而验证了计算流体动力数值计算的可信性。采用分离涡模拟方法,对敞水泵和装船泵进行了三维非定常数值模拟,计算分析了叶轮进出口、叶轮内部、导叶内部及喷口5个截面和叶轮叶顶间隙处的压力脉动,并对不均匀来流带来的差别进行了研究。结果表明:在敞水泵和船后泵的叶轮出口、导叶内部,水流距叶轮越远,压力脉动影响越小,压力脉动频率取决于叶轮转动频率,压力脉动幅值沿轮毂到轮缘逐渐增大,船后泵压力脉动幅值整体高于敞水泵;对于均匀来流,敞水泵旋转域叶轮室的压力脉动频率主要受导叶的影响,船后泵则受轴频的影响,二者压力脉动幅值在叶顶间隙处均从叶顶沿导边到随边逐渐增大;对于敞水泵,流道出口压力脉动频率主要受叶频控制,对于船后泵,压力脉动频率为轴频。  相似文献   

10.
叶顶间隙对涡轮非定常气动性能的影响   总被引:1,自引:1,他引:0  
为了分析动静干涉条件下叶顶泄漏流动对涡轮气动性能的影响,对某高负荷低压涡轮级进行了不同动叶叶顶间隙下的定常和非定常数流动的值模拟研究。结果表明:叶顶泄漏流动对上游静叶和动叶中、下部区域影响极小,影响范围主要体现在叶顶区域;随着叶顶间隙增加,动叶能量损失增加,且非定常条件下的损失增加比定常条件下大;叶顶泄漏流动对叶顶通道涡的发展和生成具有抑制效果;动静干涉效应对于泄漏涡的生成、发展、运行轨迹以及范围都有影响,且随着叶顶间隙的增加这种影响效果逐渐变得明显。  相似文献   

11.
凹槽状动叶顶部非定常气膜冷却性能的研究   总被引:2,自引:0,他引:2  
采用数值求解三维(RANS)方程的方法,开展了燃气透平级在动静叶干涉下凹槽状动叶顶部定常和非定常气膜冷却性能的研究.定常计算结果表明:吹风比为1.0时的动叶顶部气膜冷却有效度优于吹风比为0.5和1.5的情况.在吹风比为1.5时,气膜冷却气流脱离槽底壁面并导致气膜冷却有效度降低.非定常计算结果表明:在动静干涉下凹槽状动叶顶部内流动和气膜冷却有效度具有高度的非定常特征;上游静叶尾迹和通道涡周期性地与动叶顶部间隙泄漏流相互作用,使得动叶顶部凹槽底部分离线发生变化,冷却气流覆盖槽底壁面的位置和面积也发生相应的改变,进而导致槽底和槽侧面的气膜冷却有效度发生变化;定常计算得到的凹槽底部气膜冷却有效度的预测值大于非定常计算的时均结果.  相似文献   

12.
为了研究水泵水轮机在异常低水头下内部流动的压力脉动特性,以某抽水蓄能电站模型水泵水轮机为研究对象,基于大涡模拟方法,对模型机组进行全流道非定常数值计算.结合试验数据,分析异常低水头下流道内不同位置处压力脉动特征和流态特征,讨论流量变化对机组压力脉动特性的影响.结果表明:异常低水头下,压力脉动主要由"导叶-转轮-尾水管"之间的两级动静干涉以及肘管段结构弯曲引起水流撞击等因素共同引起;流量变化对导叶后转轮前压力脉动的频率和幅值影响不大,仅在小流量区有所区别;尾水管内压力脉动的低频值和幅值受流量变化的影响较大,而高频值则在各种流量状况下均未出现.与正常运行工况相比,水泵水轮机在异常低水头工况下的压力脉动特性明显增强,对机组的稳定性和安全性造成了十分不利的影响.  相似文献   

13.
针对离心泵非定常流动压力脉动特性,采用滑移网格的大涡模拟技术对叶片包角分别为95°,100°,105°,108°的4副叶轮进行数值模拟.分析了叶片包角对离心泵水力性能、叶轮出口"射流-尾迹"、测点压力脉动频谱特性和叶轮径向力的影响关系.结果表明:随着包角的增大,离心泵的水力性能下降;包角适当增大,会使叶轮射流-尾迹流动结构变弱.在设计工况下,蜗舌附近测点压力脉动最大;在蜗壳螺旋段压力脉动强度沿流动方向逐渐变弱,而在叶轮流道内压力脉动沿流动方向逐渐增强,在叶轮出口处达到最大;而离心泵叶轮所受径向力随着包角的增大而减小,适当地增大包角可以提高离心泵运行的可靠性.  相似文献   

14.
基于非定常计算的对旋风机压力脉动分析   总被引:3,自引:1,他引:3  
利用Realizable k-ε湍流模型对局部对旋负机进行了全流道非定常湍流计算,预测了前后两级化附近各干涉面上压力脉动的时域分布情况。分析结果表明,前后两级叶轮之间的动-动干涉、前后两级叶轮与其相邻部件之间的动-静干涉以及流动的周期非定常特性是对旋式通风机内部压力脉 动产生的主要根源;后级叶轮叶片对叶轮区域压力脉动的影响要远大于前级叶轮。数值模拟结果可以作为对旋风机叶轮部分气动噪声预估的参考依据。  相似文献   

15.
为了探究进口周向总压畸变对压气机性能的影响,以及不同畸变角下压气机端区流场对畸变响应的区别,对跨声速轴流压气机一级动静叶进行全周非定常数值模拟,分别采用均匀来流,畸变角为30°、90°和120°的畸变来流这4种进口条件。进口畸变使压气机的性能明显恶化,并且随着畸变角的增大恶化加剧。畸变角为120°时,随着动叶扫过畸变区,动叶叶顶区域激波的结构和强度发生改变,叶顶间隙泄漏涡的轨迹和强度也发生周期性变化。畸变也会对下游静叶流动产生影响,使静叶叶顶和角区分离加重。当畸变角为90°时,所影响的动叶流道数减少但流场对畸变的响应规律没变。当畸变角减小到30°时,畸变经过动叶完全衰减,静叶流场几乎不受影响。研究结果揭示了压气机性能改变和叶顶、叶根端区流动结构动态特征与畸变来流间的关系,可为提高压气机抗畸变能力提供理论基础。  相似文献   

16.
本文首次应用离散涡方法求解了具有动静叶栅的不稳定流场,特别是当流动产生分离时的流场,本文应用离散涡方法的求解不需要象通常那样,假设在动静叶栅之间存在一个混合面,在该混合面上注动参数沿周向是不均匀的,特别是当流动发生大尺度分离时,不均匀性尤其明显,文章基于离散涡方法提出了求解动静叶栅统一流场中如何确定解的唯一性问题,它使得整个求解成为可能。文章给出了在不同情况下(不同的气流进口角),不同的相对于动静  相似文献   

17.
合成射流控制下低压高负荷透平叶片边界层分离大涡模拟   总被引:1,自引:0,他引:1  
为了研究合成射流对低压高负荷透平叶片边界层流动分离进行控制的效果及机理,采用大涡模拟方法对利用合成射流控制低压高负荷透平Pak-B叶栅内的非稳态流动分离特性进行了研究.在合成射流控制下的结果表明:Pak-B叶栅吸力面流动分离位置变化不大,再附位置明显提前,叶栅吸力面尾缘区域逆压梯度明显减小,总压损失系数降低,分离泡尺寸缩小;叶栅吸力面大部分剪切层黏附于壁面,也未出现大尺度二维展向涡,静压脉动特征频率向高频转移,低频脉动幅值降低,大尺度涡旋结构发生变化.通过研究还发现:在吹气过程中,边界层外部高能流体被射流卷吸进入边界层内,边界层内流体能量增大进而抑制了分离;在吸气过程中,射流孔上游区域边界层厚度减小,流速增大,从而抑制了下游流动分离.  相似文献   

18.
为研究增压器径流式涡轮内部转静干涉效应对涡轮内部流动损失、涡轮工作效率和工作性能的影响,借助逆向建模的方法建立径流式涡轮三维模型,运用非线性谐波法并结合增压器变工况的实际运行特性对涡轮增压器径流式涡轮内部转静干涉效应进行研究。结果表明,径流式涡轮内部转静干涉效应的主导因素是尾迹干扰,喷嘴环流道的后半弦长位置及整个涡轮叶轮流道是主要形成区域,形成机理是涡轮叶排的势流干扰受到主流流动的阻滞而造成迁移的距离有限,而尾迹能够随着主流的流动向下游输运。转静干涉作用的影响因素是转静叶间距离,合理增大径隙比结构参数可以改善涡轮内部的气动特性。叶顶间隙涡与上游尾迹相互作用以及尾迹与通道涡等涡系的强烈掺混是涡轮叶轮流道内呈现非定常流动的主要因素。合理减小涡轮叶顶间隙比能够降低涡轮内部流动损失。  相似文献   

19.
应用雷诺涡粘模型(液相)、离散相流动模型(固相)和压力耦合流场计算法,对渣浆泵全流道内固液两相湍流场的固相颗粒的冲蚀行为进行数值模拟.研究泵转速、固相粒径和叶片参数对颗粒冲蚀特性的影响.研究结果表明:随着泵转速的提高或者粒径的增大,颗粒冲击叶片表面的位置逐步移向叶片的头部,颗粒的冲击速度和冲击角度随之增大;不同叶片参数的叶轮对固相颗粒的冲蚀行为影响明显;数值模拟的研究成果可应用于抗冲蚀磨损叶轮的设计.  相似文献   

20.
为了研究水泵水轮机内部不同部位处的压力脉动特性,采用计算流体动力学软件对设计工况点下水泵水轮机三维全流道内部流动进行了非定常数值计算,同时监测了蜗壳隔舌附近、顶盖处、转轮与活动导叶之间以及尾水管锥管处的压力脉动。通过分析计算所得的压力脉动结果表明:机组顶盖区域压力脉动相对较为明显,水轮机工况下的脉动频率以2倍叶倍频为主,水泵工况时脉动频率以1倍的叶倍频为主;对于转轮与导叶间的无叶区域,水泵工况和水轮机工况脉动频率均为1倍叶倍频,且该处的监测点的压力脉动频率主要由于转轮与活动导叶之间的动静干涉产生;在转轮内水轮机工况时的压力脉动频率呈现多样性,水泵工况时则都以转频的倍数为主;尾水管直锥段的主频率在最优工况下等于1倍叶倍频,振动幅值较小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号