共查询到20条相似文献,搜索用时 0 毫秒
1.
《宁夏大学学报(自然科学版)》2016,(4):391-394
假定股票价格满足双分数布朗运动及跳过程驱动的随机微分方程,借助双分数布朗运动和跳过程随机分析理论,建立双分数跳-扩散过程下的金融市场数学模型,利用保险精算方法研究重置期权定价问题,获得了双分数跳-扩散过程下重置期权的定价公式. 相似文献
2.
假定股票价格服从双分数布朗运动和泊松过程共同驱动的随机微分方程,公司价值和公司负债均满足双分数布朗运动驱动的随机微分方程,建立双分数跳-扩散环境下金融数学模型,利用双分数跳-扩散随机分析理论和保险精算方法研究脆弱期权定价问题,得出了双分数跳-扩散环境下脆弱期权定价公式. 相似文献
3.
《杭州师范大学学报(自然科学版)》2017,(6)
假定股价和汇率分别满足双分数跳-扩散过程,期望收益率、无风险利率和波动率均为常数,建立双分数跳-扩散过程下金融市场数学模型,运用保险精算方法,得到了双分数跳-扩散过程下汇率连动期权定价公式. 相似文献
4.
利用双分数跳 扩散随机分析理论及保险精算方法, 建立双分数跳 扩散过程下的金融市场模型, 并给出双分数跳 扩散过程下最值期权的定价公式. 相似文献
5.
6.
在股票价格服从次分数Brown运动和跳过程驱动的随机微分方程这个假设基础上,结合次分数Brown运动以及跳过程相关随机分析知识,构建相应数学模型,结合保险精算思想对其求解,从而得到相应的再装期权定价公式。 相似文献
7.
分数跳-扩散O-U过程下幂型期权定价 总被引:1,自引:0,他引:1
假设股票价格遵循分数跳-扩散O-U过程,且无风险利率和股票波动率均为时间的确定性函数,利用保险精算的方法,建立了分数跳扩散O-U过程下的幂型期权定价模型,获得了幂型期权的看涨和看跌定价公式. 相似文献
8.
9.
以信用风险模型为基础,在股票价格服从分数跳-扩散过程,公司价值和公司负债均服从几何分数布朗运动的情况下,建立了分数跳-扩散环境下脆弱期权定价数学模型,利用保险精算方法,推导出了脆弱期权的定价公式. 相似文献
10.
在股票价格遵循分数跳-扩散过程假设下,得到了强路径依赖期权所满足的一般偏微分方程.并依据此偏微分方程获得了亚式期权和回望期权的Black-Scholes偏微分方程以及固定执行价格的几何平均亚式看涨期权定价公式.推广了关于强路径依赖期权定价的结论. 相似文献
11.
《山西大学学报(自然科学版)》2017,(1)
假定股票价格服从双分数布朗运动和泊松过程共同驱动的随机微分方程,股票预期收益率,无风险利率和股价波动率均为常数,建立双分数跳-扩散环境下金融数学模型,利用保险精算方法,结合双分数跳-扩散随机分析理论研究后定选择权定价问题,得出了双分数跳-扩散环境下后定选择权定价公式。 相似文献
12.
假设股票价格服从分数跳-扩散过程,建立了分数跳-扩散过程下的金融市场模型,利用保险精算方法和分数跳-扩散过程理论,得到了双标型两值期权定价公式. 相似文献
13.
在公司价值风险模型的基础上,研究对手单方违约风险的衍生产品定价.假设标的资产价格和合约出售方的资产-债务比均服从跳-扩散过程,其中无风险利率r(t)、标的资产的波动率σ(t)以及红利率d(t)均为关于时间的函数;而后运用结构化方法建立了双跳-扩散过程下的公司价值型脆弱期权定价模型,应用Ito引理和等价鞅测度变换,导出了期权价格的解析表达式. 相似文献
14.
复合期权是一种重要的奇异期权。在现有期权定价模型中,标的资产价格通常以几何布朗运动作为驱动源,且大多遵循连续随机过程。然而,标的资产价格并非始终都是连续的,可能会发生跳跃且可能具有长程相关性。本文基于风险中性测度假设,探究了在欧式看涨期权情形下,次分数跳-扩散模型的复合期权定价问题。运用伊藤公式和对冲技术得到该模型下满足的偏微分方程,并运用泊松跳跃和累计概率分布函数理论进一步给出了复合期权价格的表达公式。通过数值模拟探究了多个参数对期权价格的影响,并与几个常用模型的期权价格进行了比较。 相似文献
15.
《四川理工学院学报(自然科学版)》2019,(5):80-86
本文考虑次分数跳-扩散环境下最值期权的定价问题。最值期权作为一种重要的新型金融衍生产品,它是讨论两个或多个风险资产的最大值或最小值期权。为了更贴合标的资产价格变化的实际过程,首先建立次分数跳-扩散过程下的金融市场模型,得到标的资产价格所满足的随机微分方程,然后再利用随机分析理论及保险精算方法,从而得到次分数跳-扩散过程下最值期权的定价公式。此过程推广了最值期权模型,使应用更为广泛。研究结果表明,与标准布朗运动下的期权价格相比,次分数跳-扩散下期权价格要同时取决于到期日、Hurst参数和跳跃次数。 相似文献
16.
应用风险中性原理研究基于分数跳扩散过程的欧式双向期权定价,推导出标的资产价格服从分数跳扩散过程的欧式看涨期权、看跌期权及欧式双向期权的定价公式。 相似文献
17.
为了使股票价格更接近金融市场的实际价格,考虑了股票价格服从双分数布朗运动和泊松过程共同驱动的随机微分方程,股票预期收益率和股价波动率均为常数,根据双分数布朗运动随机分析理论,建立双分数Ornstein-Uhlenback过程下跳-扩散模型金融市场数学模型,运用保险精算方法,获得欧式看涨和欧式看跌期权定价公式及平价关系,并得到了后定选择权定价公式. 相似文献
18.
19.
《华东师范大学学报(自然科学版)》2017,(3)
给出了标的资产服从混合分数跳-扩散过程的几何平均亚式期权定价的解析解.运用广义Ito引理和自融资交易策略得到混合分数布朗运动下带跳的几何平均亚式期权定价的偏微分方程模型.结合边值条件,通过求解该偏微分方程得到亚式期权定价的解析解.通过数值试验,讨论各定价参数对期权价值的影响.本文推广了一些已有的结论,所得结果更贴近实际金融市场. 相似文献
20.
利用分数维Ito公式和Δ-对冲技巧,导出了分数维Hull-White利率下原生资产价格服从分数跳-扩散过程的欧式期权定价模型;利用偏微分方程法,求得了该模型的解析解,且导出了上述条件下的欧式看涨期权定价公式、欧式看涨-看跌期权平价公式和欧式看跌期权的定价公式;并由此得到了具相同条件下的欧式数字看涨、看跌期权的定价公式及平价公式。 相似文献