首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为满足车辆自适应巡航安全性要求,提出了一种分层式自适应巡航控制策略。首先将车辆行驶模式分为定速巡航与跟车巡航两种,并设计控制模式切换策略,针对不同模式,分别建立基于PID控制和基于可变车头时距的安全车间距策略与最优控制的控制器模型,获得期望加速度;然后建立下层制动/节气门开度切换模型及其逆模型,得到车辆期望的节气门开度和制动压力,实现对车辆的控制;最后基于CarSim与Matlab/Simulink联合仿真平台进行测试。结果显示,所设计的安全车间距策略和控制策略能够保证巡航稳定性及安全性。  相似文献   

2.
以轮毂电动机驱动电动汽车为研究对象,采用分层控制策略提出自适应巡航系统,结合上层模型预测控制器与下层PID (proportion integral differential)控制器,针对复杂的纵向跟随工况,对轮毂电动机输出的驱动力矩进行精确控制.提出基于前车加速度的可变车头时距策略,利用模型预测控制算法(model predictive control, MPC)求解本车期望加速度的上层控制器,利用PID算法求解整车前后轴驱动力矩,并输入到轮毂电动机的下层控制器,实现前后轮驱动力矩分配,最终实现车辆纵向自适应巡航.建立联合仿真模型,针对匀速前进、紧急制动、城市循环工况等场景,对所提出的自适应巡航分层控制策略进行验证,结果表明:所提出的自适应巡航系统控制策略针对纵向复杂行驶工况的跟驰效果良好,跟驰过程中车间距误差较小,加速度变化与电动机驱动转矩变化可以较好地进行同步与响应.  相似文献   

3.
为了提高自适应巡航系统的鲁棒性和对复杂跟车环境的适用性,提出一种基于模型预测控制(model predictive control,MPC)的自适应巡航系统分层控制策略。上层控制策略主要考虑速度控制模式和距离控制模式之间的切换,下层控制策略则基于MPC理论而提出,确定汽车加速、减速或保持当前车速,以提升系统跟随性。在Carsim软件中选取有防抱死制动系统的C级掀背车,实时模拟两车(前车和本车)跟随的运行过程。在MATLAB/Simulink中建立纵向运动学模型,运用MPC控制策略对车辆的跟车工况进行联合仿真。结果表明,我们设计的MPC控制器与PID(proportional-integral-derivative,比例-积分-微分)控制器相比,在跟车工况下本车的加速度峰差值仅为1.65 m/s~2,加速度变化均值降低约23%,提高了驾驶的舒适性和行驶的稳定性;同时车间距误差范围控制在-0.5~7.3 m,均值误差降低约12%,在实际跟车环境中,能有效减少追尾、加塞等情况的发生。  相似文献   

4.
汽车自适应巡航控制主动制动实现方法   总被引:1,自引:1,他引:0  
探讨主动制动控制系统在汽车自适应巡航控制中的作用.对主动制动采用基于加速度的控制方案,给出了主动制动系统的硬件组成.为了实现期望加速度跟随控制,在理论和试验的基础上建立了用于求解期望制动压力的车辆制动逆动力学模型.利用改进的PID算法开发了制动压力控制器.实车试验证明,制动压力和加速度控制效果都达到了自适应巡航系统对主动制动控制的要求.  相似文献   

5.
为解决自适应巡航控制快速原型开发并提高仿真系统精度,建立了包含电子节气门与主动制动等硬件在内的执行机构在环仿真系统. 利用模糊前馈与PI反馈设计了以距离偏差和速度偏差为输入,基于加速度控制的前车跟随控制器,使主车保持安全车距跟随前车车速行驶,利用执行机构在环仿真系统对开发的前车跟随控制器进行了验证. 结果表明仿真系统运行正常,前车跟随控制器可完成对主车的控制,并对主车参数的变化及环境扰动具有一定的抗干扰能力.   相似文献   

6.
针对智能电动汽车(intelligent electric vehicles,IEV)的纵向控制在不确定性干扰下存在非线性、强时变特征,提出一种分层控制架构下的智能电动汽车纵向跟车运动自适应模糊滑模控制方法.根据经典理论力学建立表征智能电动汽车纵向行为机理的动力学系统模型,并进一步构建智能电动汽车纵向跟车运动分层控制构架.上层控制根据本车与前车的行驶状态信息得出期望加速度滑模控制律,进而利用自适应模糊系统替代滑模切换项以改善控制性能;下层控制通过设计驱动/制动切换策略以提高行驶舒适性,然后基于逆动力学模型实时求解期望控制力矩以跟踪期望加速度.为验证所提方法的有效性,在不同行驶工况下进行的仿真试验结果表明,该方法能实现本车平稳准确地跟随前车行驶,且对前车加速度的干扰具有鲁棒性.  相似文献   

7.
在定速巡航的基础上,结合跟车巡航功能,设计了一种自适应巡航分层控制系统,可根据行驶工况自动切换其工作模式,实现巡航系统的智能化。该系统综合考虑了跟车系统中前车车速、加速度、车距等各种因素,利用模糊控制技术的优点,提高控制系统的性能。利用Matlab仿真及硬件在环技术进行实验研究,结果表明该控制系统能够实现巡航模式的自适应切换,并且具有较高的控制精度和理想的巡航性能。  相似文献   

8.
为进一步提升多目标自适应巡航系统预测控制精度,提出一种基于粒子群寻优的汽车自适应巡航预测控制算法.首先建立一种包含前车加速度扰动的自适应巡航系统车间纵向运动学模型,并对其线性离散化;其次综合车距误差、相对车速、自车加速度和冲击度,设计二次型多目标优化性能指标函数和多参数约束条件,构建自适应巡航预测控制优化命题;最后为便于问题求解,将目标函数和约束条件推导转化为以预测控制增量为优化变量的规范形式,并基于粒子群优化算法求解自适应巡航预测控制的最优控制律.通过Matlab/Simulink多工况仿真结果表明,粒子群算法求解的最优控制律能够控制自车保持更好的跟踪性和自适应性.   相似文献   

9.
通过汽车制动性能测试仿真试验验证了自适应巡航控制(adaptive cruise control,ACC)系统上层速度控制模型——智能驾驶员模型(intelligent driver model,IDM)的不足,对比分析了改进智能驾驶员模型(improved intelligent driver model,IIDM)的优点。针对变道插入行为引起后车不必要的紧急刹车行为,基于恒加速度(constant-acceleration heuristic,CAH)模型的假设,建立结合IIDM模型和CAH模型的ACC系统上层速度控制模型并进行特定工况下的仿真试验。仿真结果表明:建立的ACC系统上层速度控制模型不仅保留了IIDM和CAH模型的优点,还具有自身的特点。当不切实际的制动减速行为发生时,ACC系统IIDM模型和CAH模型的制动减速度应在CAH模型的车辆加速度与舒适制动减速度的差值和CAH模型的车辆加速度之间;对于较小车间距离,制动减速度会适当增大,可以避免危险发生。  相似文献   

10.
本文采用自适应神经-模糊推理系统(ANFIS)结构,对车辆纵向运动跟车间距控制问题进行了研究.设计了基于ANFIS结构的跟车间距控制器,通过仿真对ANRLS结构控制器中的各参数进行了优化.建立了基于高斯型函数作为隶属度函数的车间距离控制器模型,运用前后两车的速度差与距离差的变化情况对后车的加速度进行控制.最后,本文对上述控制方法用Matab进行了仿真试验.仿真结果表明,运用本文设计提出的方法对后车的加速度进行控制,能保证后车经过短暂的速度变化后使前后两车之间保持安全距离,避免碰撞追尾事故的发生,验证了本文所提理论的正确性.  相似文献   

11.
汽车自动巡航系统智能控制策略   总被引:4,自引:1,他引:4  
为了在汽车巡航控制中实现车距控制,在汽车模型及其工作原理的基础上,建立了基于模糊控制理论的基本控制策略和利用神经元修正的车距智能控制的方案,并设计了模糊控制和单神经元的控制策略,以基本的模糊控制和神经元修正模块组成车距控制控制器,根据汽车行驶的目标距离和实际距离之间的偏差和速度大小来调接控制参数,采用神经元控制对模糊决策得出的输出控制量进行加权修正。仿真结果表明了所设计的智能控制策略的可行性和有效性。  相似文献   

12.
提出了一种用于自适应巡航控制(ACC)系统的控制模式切换策略。现有ACC控制模式的划分及其切换策略有可能使车辆加速度变化过于剧烈,且未考虑驾驶员超车等需求,不利于驾驶舒适性。该文在现有ACC控制模式的基础上增设接近前车和超车2种控制模式,提出基于零期望加速度曲线的切换策略,并利用加权平均算法对控制量进行连续性处理。实车试验表明:所设计的ACC控制模式切换策略与实际驾驶工况相符,能够实现切换过程中加速度的连续平稳变化,并满足驾驶员控制优先权的要求。  相似文献   

13.
针对目前使用较为广泛的基于模型预测控制的自适应巡航系统,该文提出一种分层控制结构,设计一种变权重的模型预测控制器作为上位控制器。为了获得最佳加速度,综合考虑驾驶员期望车距,车辆自身物理限制,前车加速度影响等因素。使用高斯朴素贝叶斯算法预测前方车辆未来行为,从而采取不同的权重参数策略。通过Matlab/Simulink与Carsim对固定权重参数和可变权重参数分别进行联合仿真,结果表明,随着道路条件的变化,可变权重参数可以提高车辆自适应巡航系统的表现效果,显著降低固定权重策略的系统速度和距离偏差量,有效提高了系统的控制精度与适应性。  相似文献   

14.
针对自适应巡航系统控制鲁棒性及存在路面扰动、实时扰动等不确定性的问题,提出一种考虑安全车距的车辆自适应滑模控制方法.首先通过建立车辆纵向动力学模型,并将道路坡度作为系统扰动;基于安全车距设计自适应巡航滑模控制器,通过稳定性分析证明该控制器的稳定性;最后,通过与PID控制算法进行对比研究.结果表明:采用滑模控制器的自适应巡航控制系统具有更好的跟踪性能和抗干扰能力.  相似文献   

15.
汽车自适应巡航控制的间距策略   总被引:1,自引:1,他引:0  
吴志红  黄思源 《科学技术与工程》2014,14(15):301-305,311
汽车自适应巡航控制中,为确定不同车距下的控制策略,通过建立汽车行驶模型和制动模型,推导得到车速判据、第一车距判据、第二车距判据。将前后两车之间距离按此三条判据,由前至后划分为避撞区域、制动区域、降速区域、加速区域。自适应巡航系统能够判断和识别汽车当前所处区域,能够决定当前所应采取的驱动控制和制动控制策略。  相似文献   

16.
一种汽车巡航控制的分层控制算法   总被引:2,自引:0,他引:2  
为减轻驾驶员操作负荷,提高车辆行驶的安全性和舒适性,提出了一种自适应巡航分层控制算法,并通过调节电子节气门实现了在实车上的应用.在上层控制中,设计了一种基于驾驶员稳态跟车特性的线性跟车算法和可供选择的安全车距模型;在下层控制中研究了基于逆查询表的速度闭环控制策略.通过道路实验知识构建了节气门开度查询表,并结合增量式PID控制的精细调节,实现了良好的车速跟随效果.在此基础上,通过定速巡航实验和稳态跟车实验对所设计的控制算法进行了实车验证.实验结果表明,在正常行驶工况下,自适应巡航控制器能有效降低驾驶强度,对驾驶员具有良好的适应性和舒适性.  相似文献   

17.
为解决在复杂交通环境中自适应巡航系统存在旁车切入本车前方工况时,目标期望距离计算模型得到的期望相对距离与实际相对距离发生阶跃以及堵车蠕行工况,车辆与前车距离较近,拥堵路况不断启停的目标车辆的速度、加速度和相对距离持续抖动,导致的纵向加速度幅值过大带来的驾驶平顺性、舒适性和安全性问题,提出可变目标距离的自适应巡航控制算法,基于模型预测控制理论,建立离散纵向运动学预测模型,综合考虑底盘加速度响应、极限安全纵向跟车距离、车辆自身物理限制、驾驶人乘坐舒适性等优化控制目标,引入松弛因子进行在线求得可行解.在旁车不同切入工况、综合工况行驶以及堵车蠕行工况对本算法进行仿真和实车测试并利用数据对IDM算法开环实验,研究成果对比表明,考虑旁车切入的可变目标距离的自适应巡航控制算法在旁车加速切入工况中,纵向控制产生的最大冲击度为-0.25 m/s3,相比于IDM模型降低50%,堵车蠕行工况中纵向控制产生最大减速度为-0.3 m/s2,相比于IDM模型降低30%,综合工况和定速巡航工况中,算法在保持安全距离情况下可以对车辆实现稳定纵向控制,加速度幅值不超过-0.3...  相似文献   

18.
为提升自动驾驶汽车在自适应巡航跟车和车道切换联合工况下的纵向跟驰、横向稳定性能,针对加速跟随前车且同时换道这一特殊工况下的车辆行驶稳定性控制需求,提出了一种具有两层结构的协同控制策略.在分析跟车和换道联合工况控制需求基础上,建立了基于五次多项式的换道轨迹模型和固定车头时距跟车模型,设计了上层线性时变模型预测控制器,输出...  相似文献   

19.
为提高汽车行驶的主动安全性及缓解司机驾驭汽车的疲劳感,提出了汽车巡航智能跟随控制方法.应用模糊控制理论,以前车和巡航车间理论安全距离与实际相对距离偏差及两车速度偏差作为控制变量,设计智能巡航模糊逻辑控制器,将油门开度或制动踏板行程作为控制器输出变量,实现汽车巡航的智能跟随控制.利用Matlab/Simulink针对智能跟随控制功能实施了仿真验证,结果表明:设计的智能巡航模糊控制器能够有效地跟随前方车辆行驶并始终保持两车间的安全距离,说明该控制器具备较强的鲁棒性.  相似文献   

20.
针对智能车辆纵向控制要同时满足期望车速和期望加速度的需求,同时考虑到道路阻力变化对纵向控制的影响,提出一种考虑加速度需求的车速自适应控制方法。利用车辆纵向动力学模型,通过自适应遗忘因子递归最小二乘法对道路阻力进行估计。在此基础上基于条件积分方法设计耦合的车速和加速度控制律,通过积分自动调节和切换策略,保证了车速控制和加速度控制的平滑切换,并且通过建立李雅普诺夫函数,证明了车速跟踪误差的全局渐进稳定。最后,通过仿真试验和实车试验验证了控制方法的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号