首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
改性纳米二氧化硅用于丙烯酸聚氨酯防腐涂料   总被引:4,自引:0,他引:4  
为改善纳米二氧化硅的分散性,以硅烷偶联剂KH-570,分散剂BYK-163和钛酸酯偶联剂NDZ-201对纳米二氧化硅进行表面改性.通过沉降率、FTIR和SEM等表征评定方法,对产物结构和性能进行了分析.结果表明,KH570能够对二氧化硅进行改性,并且效果优良.最佳改性条件为:改性剂用量为5%,反应时间30min左右,改性后的纳米二氧化硅用于丙烯酸聚氨酯防腐涂料中,涂料各项性能都有较大改善,均达到国家标准.  相似文献   

2.
为提高白炭黑对有机高分子的亲和性,利用偶联剂同时拥有亲油基和亲水基的结构特性,对白炭黑颗粒表面进行改性.考察了改性时间、温度、pH和偶联剂与白炭黑的质量比对白炭黑表面改性情况的影响.通过红外光谱、热失重、氮气吸脱附、接触角、活化度及沉降体积测试等手段对改性前后白炭黑结构及改性效果进行表征.结果表明,γ-甲基丙烯酰氧基丙基三甲氧基硅烷(KH570)的改性效果明显优于γ-巯丙基乙氧基双(丙烷基-六乙氧基-硅氧烷)(Si747)和双-(γ-三乙氧基硅基丙基)四硫化物(Si69).以无水乙醇为改性剂,当KH570与白炭黑的质量比为14%、改性温度为50℃、pH为7、改性反应6 h时,活化度达到最大.改性后偶联剂接枝在白炭黑表面,亲水性降低、分散性提高,表面浸润性得到明显改善,拓宽了白炭黑在工业中的应用范围.  相似文献   

3.
采用3种偶联剂分别对碳酸钙进行表面改性,分析改性碳酸钙活化指数的影响因素,通过SEM分析和沉降体积的测试,评定3种偶联剂的改性效果。结果表明,钛酸酯偶联剂KH101改性碳酸钙最佳反应条件为,反应温度80℃,反应时间70min,m(偶联剂)∶m(碳酸钙)为0.03,环己酮用量为碳酸钙的5倍;硅烷偶联剂KH570、KH151改性碳酸钙最佳反应条件为,反应温度70℃,反应时间70min,m(偶联剂)∶m(碳酸钙)为0.03,环己酮用量为碳酸钙的5倍。用KH151、KH570两种硅烷偶联剂改性后的碳酸钙团聚现象仍比较严重,用KH101钛酸酯偶联剂改性后的碳酸钙团聚现象得到明显改善。  相似文献   

4.
采用3种偶联剂分别对碳酸钙进行表面改性,分析改性碳酸钙活化指数的影响因素,通过SEM分析和沉降体积的测试,评定3种偶联剂的改性效果.结果表明,钛酸酯偶联剂KH101改性碳酸钙最佳反应条件为,反应温度80℃,反应时间70 min,m(偶联剂)∶m(碳酸钙)为0.03,环己酮用量为碳酸钙的5倍;硅烷偶联剂KH570、KH151改性碳酸钙最佳反应条件为,反应温度70℃,反应时间70 min,m(偶联剂)∶m(碳酸钙)为0.03,环己酮用量为碳酸钙的5倍.用KH151、KH570两种硅烷偶联剂改性后的碳酸钙团聚现象仍比较严重,用KH101钛酸酯偶联剂改性后的碳酸钙团聚现象得到明显改善.  相似文献   

5.
纳米二氧化硅粉体的表面改性研究   总被引:28,自引:0,他引:28  
以乙醇作为分散介质用偶联剂KH-570对纳米二氧化硅进行了表面改性,通过透射电镜和光电子能谱对其改性效果进行了表征,研究发现纳米二氧化硅在乙醇中达到纳米级的分散;且偶联剂与纳米二氧化硅表面发生了化学反应.  相似文献   

6.
根据含32 P复合新型材料应用于内辐射治疗肿瘤的设想 ,以非标P模拟32 P ,用IR、接触角测定、复钙时间测试等方法研究了Ca3(PO4) 2 和Ca5(PO4) 3(OH)粉末的表面处理的效果、泄漏情况及血液相容性 结果表明 :Ca3(PO4) 2 和Ca5(PO4) 3(OH)粉末经硅烷偶联剂KH - 570处理后 ,表面形成偶联剂膜 ,有效提高粉末的疏水性 ,并明显降低P在水中的溶出量 ;同时可以提高粉末的血液相容性 ;当KH - 570溶液的浓度为 1 5%~ 2 0 % ,且KH - 570用量是粉末的 2phr时 ,表面处理的效果较佳  相似文献   

7.
用偶联剂KH550、KH560、KH570、NXT和H3PO_4刻蚀对尼龙短纤维进行表面改性,将改性后的尼龙短纤维与天然橡胶制成母炼胶,然后用母炼胶制备尼龙短纤维-天然橡胶复合材料。通过力学性能测试以及RPA检测等手段,分析不同偶联剂和H3PO_4刻蚀改性尼龙短纤维对复合材料综合性能的影响,发现用偶联剂KH570处理尼龙短纤维是改善复合材料综合性能较好的方法。在偶联剂KH570处理的尼龙短纤维基础之上添加不同相溶剂制备复合材料,通过力学性能测试分析不同相溶剂对综合性能的影响,并用扫描电镜(SEM)对复合材料断口形貌进行观察和分析,发现添加进口相溶剂能有效提高偶联剂KH570处理的尼龙短纤维在天然橡胶中的分散性,同时也能减少复合材料表面的孔洞即提高了尼龙短纤维与天然橡胶之间的界面粘结力。  相似文献   

8.
为了改善酚醛泡沫保温板力学性能低和易掉渣的缺陷,使用KH570偶联剂对三级及以下粉煤灰表面进行功能化处理,研究其对酚醛泡沫板的力学性能和保温性能的影响.结果表明:在改性时间30 min和反应温度80℃下,粉煤灰的最佳改性配方(以粉煤灰质量计算)为:KH570偶联剂4%、无水乙醇16%、蒸馏水4%.当粉煤灰添加量为酚醛树...  相似文献   

9.
将钨酸铅(PbWO_4)粒子球磨至纳米尺度,采用γ-甲基丙烯酰氧基丙基三甲氧基硅烷(KH570)对其进行表面改性,并与天然橡胶(NR)机械共混,制备出橡胶纳米复合材料,运用扫描电镜(SEM)、X射线衍射仪(XRD)、傅里叶变换红外光谱仪(FT-IR)、接触角(CA)测量仪、电子万能试验机和高纯锗γ谱仪系统对其形貌及性能进行了表征与测试。结果表明:KH570成功接枝到PbWO_4表面;与未改性PbWO_4相比,改性后PbWO_4在NR中分散更为均匀,复合材料力学性能及γ射线屏蔽性能更为优异;PbWO_4与NR填充质量比为50∶100时,力学性能最佳(拉伸强度为30.6 MPa),相比于填充质量比为60∶100时,γ射线屏蔽率仅下降了1.8%,因此PbWO_4与NR最佳配料比为50∶100。  相似文献   

10.
用偶联剂KH550、KH560、KH570、NXT和H3PO4刻蚀对尼龙短纤维进行表面改性,将改性后的尼龙短纤维与天然橡胶制成母炼胶,然后用母炼胶制备尼龙短纤维-天然橡胶复合材料。通过力学性能测试以及RPA检测等手段,分析不同偶联剂和H3PO4刻蚀改性尼龙短纤维对复合材料综合性能的影响,发现用偶联剂KH570处理尼龙短纤维是改善复合材料综合性能较好的方法。在偶联剂KH570处理的尼龙短纤维基础之上添加不同相溶剂制备复合材料,通过力学性能测试分析不同相溶剂对综合性能的影响。并用扫描电镜(SEM)对复合材料断口形貌进行观察和分析,发现添加进口相溶剂能有效提高偶联剂KH570处理的尼龙短纤维在天然橡胶中的分散性,同时也能减少复合材料表面的孔洞即提高了尼龙短纤维与天然橡胶之间的界面粘结力。  相似文献   

11.
通过表面接枝的方法,在室温下用偶联剂(MPS)KH-570对纳米SiO2进行接枝,经引发剂引发甲基丙烯酸甲酯(MMA)发生自由基聚合包覆,并通过TEM和FTIR等测试手段表征粉体有机包覆层的形貌和化学组成结构,应用DSC和TGA等测试方法研究了反应条件对复合粒子结构和性能的影响.为了得到较高的接枝率,用两种不同浓度的偶联剂对纳米SiO2进行预处理,纳米SiO2-MPS复合粒子的接枝率随着偶联剂浓度的增大而提高,且SiO2-MPS-PMMA复合粒子的接枝率和单体的转化率随着引发剂的浓度和单体的浓度的增大而明显提高.  相似文献   

12.
纳米AlN润滑油抗磨添加剂的制备与应用研究   总被引:1,自引:0,他引:1  
采用溶液聚合反应,将马来酸酐接枝到低分子量的无规聚丙烯链(a-PP)上,制备a-PP-g-MAH大分子表面改性剂,并应用其对纳米AlN粉体进行表面修饰改性.对合成的改性剂、改性前后的纳米AlN运用FT-IR、TGA、接触角、沉降实验等方法进行表征和测试.结果表明:当接枝率为2.69%的大分子改性剂用量为9%时,对纳米AlN粉体表面处理效果最好,有效提高了它在润滑油中的悬浮分散性.当改性的纳米AlN粉体以0.3%质量分数分散于润滑油中时,可以3个月不沉降,润滑油的极压值由1000N提高到1300N;电镜照片显示,其对摩擦副表面起到了一定的保护和修复作用.  相似文献   

13.
利用氨丙基三乙氧基硅氧烷(APTES)和全氟辛基磺酰氟(PFOSF)对纳米SiO2颗粒进行表面改性,通过红外光谱(FT-IR)、热重分析(TGA)和接触角(CA)等手段对改性后的纳米颗粒进行表征,确定了改性剂的接枝类型,考察了接枝率对纳米颗粒疏水程度的影响,并研究了纳米颗粒疏水程度及其占硅膏的质量分数对消、抑泡性能的影响,最后结合硅膏的黏度、流变性及有机硅消泡剂的消泡机制对上述实验数据及现象作出对应的解释。结果表明:PFOSF以APTES作为"媒介"化学接枝到SiO2表面,当二者占SiO2质量分数分别为9.4%和4.6%时,颗粒具有最大的接触角,约150°;当二者占SiO2质量分数分别为4.7%和2.3%时,颗粒的接触角为110°,控制改性颗粒占二甲基硅油(PDMS)质量分数的4%,由此硅膏制备的有机硅消泡剂具有最佳的消、抑泡效率。  相似文献   

14.
为简化超疏水涂层的制备过程,提高耐磨性,以端羟基聚二甲基硅氧烷(HTPDMS)、微/纳米二氧化硅分2步改性双酚A型环氧树脂,涂层的固化过程采用紫外光固化技术,然后对涂层的表面性能进行了一系列的测试表征.探究了HTPDMS用量和二氧化硅用量对涂层接触角和其他性能的影响.结果表明,当HTPDMS添加量为环氧树脂质量的80%时,环氧树脂可获得最好的改性效果.当改性环氧树脂与微/纳米二氧化硅的质量比为10∶1.5∶1.5时,采用复配型光引发剂,紫外汞灯照射10 min,即可得到接触角>154°滚动角<1°的超疏水涂层.  相似文献   

15.
通过化学改性的方法利用硅烷偶联剂γ-(甲基丙烯酰氧)丙基三甲氧基硅烷(KH570)对TiO_2粉体进行表面改性,并通过傅里叶变换红外光谱(FT-IR)、差示扫描量热法(DSC)、力学性能分析、紫外-可见-红外分光光度计(UV-vis-NIR)、温度测试等方法考察改性前后TiO_2对高密度聚乙烯(HDPE)的结晶行为、力学性能、太阳能反射率以及实际降温效果的影响。结果表明:KH570能成功地以共价键的形式接枝到TiO_2表面;KH570有利于增进TiO_2表面和HDPE表面之间的界面作用力;与未改性TiO_2相比,改性TiO_2有利于提高材料的伸长率和屈服强度;TiO_2的加入能大幅度提高样品在可见光和近红外光部分的反射率;改性TiO_2加入HDPE基体后具有最好的降温效果。  相似文献   

16.
以甲苯为连续相、水为分散相、十二烷基苯磺酸为乳化剂兼作催化剂、正戊醇为助乳化剂,制备反相微乳液.然后引入正硅酸乙酯(TEOS),在水核中形成二氧化硅纳米粒子.接着加入通过溶液聚合制备的甲基丙烯酸甲酯(MMA)和γ-甲基丙烯酰氧基丙基三甲氧基硅烷(KH570)共聚物的甲苯溶液,实现共聚物对纳米二氧化硅的包覆.通过TEM、FTIR、TG等测试,证实得到了共聚物包覆二氧化硅的核壳结构纳米粒,平均粒径约为36,nm.当共聚物中KH570质量分数为5%时,获得最高的包覆率,聚合物占复合粒子质量的47%.  相似文献   

17.
为了改善聚酯(PET)膜的表面加工性能,采用常压射流等离子体(APPJ)处理引发PET膜表面与丙烯酸(AA)反相乳液接枝聚合,研究等离子体处理条件对接枝效果的影响.通过测试处理前后PET膜接枝率、静态接触角、傅里叶变换红外光谱以及表面形貌结构等性能表征接枝改性效果.结果表明:接枝处理可以显著改善PET膜的表面润湿性能,APPJ处理参数对样品的接枝率和润湿性产生显著影响,接枝率为1.05%的PET膜表面接触角仅为5°;红外光谱证明经接枝改性后PET膜样品在2 500~3 600cm-1及1 546cm-1处有新吸收峰出现;扫描电镜(SEM)显示,PET膜表面接枝层是由大量亚微米级甚至纳米级球形颗粒构成.  相似文献   

18.
摘要:本文以钛酸丁酯为原料,用溶剂凝胶法制备纳米TiO2,利用SEM观察粉体表面形貌和结构.分别用硅烷偶联剂(KH550, KH570, A171)对纳米粉体进行表面改性,利用SEM、XRD和FTIR,考察改性粉体的表面结构和性质变化.同时测定经改性后粉体的亲油化度值和在水、甲苯和石油醚中的分散情况;采用甲苯作溶剂,将改性粉体与LDPE树脂混合,经流延得到抗菌聚乙烯复合薄膜.利用SEM和数码相机,观察改性纳米TiO2抗菌剂/LDPE复合薄膜的抗菌性能.结果表明,KH570改性粉体在甲苯中的分散性最好,当抗菌粉体的添加量为3.0%时,制得复合薄膜的抗菌性能最好,抗菌率达到99.99%,即具有最好的抗菌效果.  相似文献   

19.
合成烯丙基甘油醚(AG)作为一种新型双羟基偶联剂用于聚氨酯(PU)与丙烯酸酯聚合物(PAC)的改性材料。采用核磁共振、红外光谱和气相色谱等对其进行表征。研究偶联剂AG和HEA与PU预聚体和丙烯酸酯单体的反应性。实验结果表明:随着偶联剂(AG和HEA)与PU反应温度的升高,异氰酸酯(NCO)的转化率逐渐增加;使用AG为偶联剂时,PU和AC未发生接枝反应;使用HEA为偶联剂时,明显发生了预期的接枝反应。当n(HEA)∶n(NCO)1时,随HEA用量增加,PU与AC的接枝率逐渐增加;当n(HEA)∶n(NCO)1时,继续增加HEA用量PU接枝率变化不大。  相似文献   

20.
本工作中,我们采用3-氨丙基三乙氧基硅烷(KH550)、钛酸酯偶联剂Tc-114、1H,1H,2H,2H-全氟癸基三氯硅烷(FDTS)、十八烷基三氯硅烷(OTS)对氧化硅材料进行表面改性,研究了不同改性剂及其用量对氧化硅材料表面润湿性的影响。表面润湿性采用水滴在表面的接触角(CA)来评价。通过傅里叶红外光谱仪(FT-IR)、接触角测量仪对氧化硅材料表面改性的性能进行了表征,结果表明,几种改性剂均能与氧化硅表面的羟基发生反应,成功改性得到不同表面润湿性的氧化硅材料,润湿性从亲水到疏水可控,提高了氧化硅材料应用范围.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号