首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 191 毫秒
1.
基于车身板件声学贡献分析的声振优化   总被引:1,自引:0,他引:1  
以降低车内低频结构噪声为目标,优化车身板件.采用子结构模态综合的方法建立结构动力学模型,并以其在实车工况下的振动响应作为声学边界元模型的边界条件,以车内驾驶员右耳位置为目标响应点,结合计算得到的声传递向量,对汽车车身进行板件声学贡献分析.通过计算得到车身各板件对车内噪声的声学贡献,分析出影响比较显著的关键面板,根据分析结果对车身相应板件进行振动抑制.经试验验证,怠速工况下,车内噪声在频率为20~100 Hz范围内的声压级水平得到比较明显的改善,主要峰值频率最大降幅5.70 dB,整体噪声水平下降了3.89 dB.结果表明:板件贡献分析方法可以为控制车内低频噪声提供合理的建议.  相似文献   

2.
文章建立了某卡车驾驶室结构有限元模型,通过数值与试验模态的相关性分析验证了模型的精确性,并在此基础上建立耦合声学边界元模型;通过实车60km/h匀速行驶工况下的道路试验,测得悬置点处的振动加速度信号和驾驶室内的声压响应;基于声传递向量(acoustic transfer vector,ATV)技术,将所测激励信号施加于耦合边界元模型进行低频段(20~220 Hz)驾驶室内频率响应分析;最后应用板件贡献量分析和模态参与因子分析找出对驾驶室内主要噪声峰值贡献显著的板件并进行结构优化。仿真和试验结果表明,驾驶室内低频噪声得到明显改善,基于ATV技术的优化分析方法可以有效控制驾驶室内的低频噪声。  相似文献   

3.
文章以某卡车驾驶室为研究对象,分别建立了驾驶室结构、声学以及声固耦合有限元模型,并对模型准确性进行了试验验证;基于建立的声固耦合有限元模型,进行了驾驶室内部场点声压响应计算和峰值频率点面板声学贡献量以及结构模态参与因子的计算;基于计算结果以及模态应变能的叠加来确定需要优化的面板和车身板件进行阻尼处理的位置。通过阻尼优化,驾驶室内150Hz峰值声压降低了5.31dB。  相似文献   

4.
提出应用颗粒阻尼进行封闭空腔目标场点的降噪处理的方法,对薄钢板焊接而成的形似乘用车的封闭空腔进行板件贡献量分析,找到了对空腔内目标场点的峰值声压贡献量最大的板件,并通过粘贴某型颗粒阻尼器的方法对目标场点的声压进行了优化.对颗粒阻尼器粘贴在封闭空腔不同位置的目标场点声压进行实验比较,验证了板件贡献量分析的正确性;对封闭空腔上添加颗粒阻尼器容器、与颗粒阻尼器质量相同的附加质量和颗粒阻尼器三种情况的场点声压进行实验对比,并分析了颗粒阻尼对封闭空腔内目标场点声压的影响;最后通过实验与仿真数据对比的方法,验证了颗粒阻尼器的阻尼损耗因子在仿真计算中的应用方法.  相似文献   

5.
针对板结构的声辐射控制,在小振幅简谐振动情况下,以声辐射模态、直接边界元理论为基础,分析得出结构表面法向振速幅值是影响板结构声辐射功率和辐射声压的主要因素.以某挖掘机驾驶室为例,建立考虑座椅的驾驶室声学边界元模型,通过对板件声功率贡献分析,确定驾驶员右耳处主要峰值频率下声功率贡献突出的板件区域.针对声功率贡献突出的板件,以各板件表面法向振速均方根值的加权值最小为目标函数,建立优化数学模型,进行声场优化.结果表明,多个目标频率下声压响应峰值都有显著的下降.因此,采用所提出的优化方法可有效地控制驾驶室内辐射声场,具有显著的降噪效果.  相似文献   

6.
采用有限元(FEM)和边界元(BEM)联合的方法对燃料电池轿车车内结构声进行预测和控制研究,提出了基于FEM/BEM的车内结构声分析方法和流程,建立了车身有限元模型和声学边界元模型,施加实测的激振力计算声学响应,通过试验数据验证了仿真模型,并进行误差分析.提出板件声学贡献分析的指导原则,介绍板件贡献分析原理和方法,进行所关注频率的车身板件声学贡献分析.最后根据分析结果对车身板件采取约束阻尼处理等控制措施,通过虚拟验证改进结果,车内低频噪声明显降低,其中后座椅和前地板改进最明显,证明所提出方法的可行性,达到优化燃料电池轿车车内噪声的目的.  相似文献   

7.
针对某微型低速纯电动汽车车内噪声问题,基于传递路径分析(TPA)方法,利用LMS/TPA软件,以驾驶员耳旁为目标点,以动力总成为激励源建立了整车TPA模型,并进行了车内噪声分析。结果表明,车内噪声主要是由结构传播引起的;左悬置z方向和后悬置x方向的贡献量最大,为车内噪声的主要传递路径。路径激励力分析结果表明,左悬置z方向和右悬置x方向的激励力最大。综合分析表明,车内噪声主要是悬置的激励力引起的,为悬置的优化提供了依据。  相似文献   

8.
张超  张劲松  万雳  徐巍  周明刚 《科学技术与工程》2021,21(30):12860-12865
为研究某型内燃机车驾驶室噪声产生的原因,基于实车试验,构建内燃机车驾驶室声学数值模型对驾驶室进行噪声特性分析。将试验测量的激励信号加载到发动机4个悬置点上计算声学响应,结合板块贡献量分析、振动试验、声学模态分析、耦合模态分析明确驾驶室噪声形成机理,在此基础上提出措施改善驾驶室内噪声环境。研究结果表明,驾驶室内噪声和壁板振动加速度在74Hz、110Hz处存在明显峰值,并且与发动机基础转频密切相关;在39Hz、74Hz、110Hz处驾驶室左、右、前壁板与室内声腔存在耦合共振响应,最终形成驾驶室特殊噪声分布。相关研究结果可以为降低驾驶室异常噪声提供参考。  相似文献   

9.
为了在车身设计阶段降低车内噪声,以HyperMesh软件建立的车身声固耦合模型为研究对象,提出一种改进的遗传算法优化车身板件厚度.采用Hammersley实验设计方法,建立白车身一阶整体模态、车身质量、车内目标点最大声压级响应面.以目标点最大声压级为性能指标,改进的遗传算法用于车身板件厚度优化.目标点声压级最大值降低4...  相似文献   

10.
基于壁板声学贡献分析的轿车乘员室声场降噪研究   总被引:5,自引:0,他引:5  
提出了一种轿车乘员室声场整体声学特性的改善方法.对现有的壁板声学贡献分析方法进行改进,采用了新的参数"声学贡献和"与"声场总贡献"来分析和衡量车身板件对乘员室声压响应的声学贡献,建立了针对多场点多响应峰值的乘员室声场降噪的方法,并以某型轿车为例详细阐述了该方法的使用情况,确定出车身板件上最佳的阻尼层贴附位置.结果表明,所提出的方法不仅使得乘员室声场取得了显著的降噪效果,而且明显降低了用于减振降噪的附加质量的使用量,有利于车身轻量化.  相似文献   

11.
厢式汽车车内噪声的试验研究   总被引:1,自引:0,他引:1  
要控制汽车车内噪声,减少其对驾驶员和乘客造成的危害,首先必须找出车内的主要噪声源本文论述了用声压法识别汽车车内主要噪声源的过程,利用声场分析技术和谱分析技术对车内的主要噪声源进行了分析通过大量的试验研究,认为发动机是导致该车车内噪声较大的主要原因,是降噪工作的重点要进行车内噪声的控制,应首先考虑抑制发动机的辐射噪声,其次要加强车身门窗的密封性并根据试验样车的实际结构特点,提出了一系列改善车内噪声性能的措施,经部分改进试验,取得了降噪1.2~3.9dB(A)的良好效果这些措施对降低车内噪声,优化车内声学环境,有着重要的指导意义  相似文献   

12.
某轿车产品研发过挥中,出现了车内噪声偏高、发动机怠速方向盘抖动2个严重影响乘坐舒适性的振动噪声问题,为了解决车内噪声偏高问题,采取了相关的措施,其中包括车身孔位的密封、旁路密封、车内钣金件的隔音、吸音处理.对于发动机怠速方向盘的抖动,一方面加强了发动机悬置软垫的装配质量一致性,另一方面调整了发动机悬置软垫的静刚度.通过这些措施的实施,解决了车内噪声声压级偏高和发动机怠速时方向盘的抖动问题,从而提高了产品品质.  相似文献   

13.
基于有限元法和边界元法的轻量化车身声学分析   总被引:2,自引:0,他引:2  
应用计算机辅助工程分析技术对一更换材料和板厚的轻量化七座客车进行声学分析.在计算声压响应时,应用有限元法进行了车身结构的频率响应分析,将计算所得的结构壁板速度响应作为内部声腔的边界条件,采用边界元法计算乘员室内部的声响应.由于整车结构优化的复杂性和汽车轻量化的要求,只对高出原结构声压响应的声压峰值进行了壁板贡献度分析,确定了贡献度最大的板,使后续的结构优化更有针对性.  相似文献   

14.
根据自适应噪声主动控制理论,选择FELMS自适应控制算法建立了某中型客车车内噪声主动控制系统.通过采集发动机悬置处振动信号获取参考信号频率.最后根据建立的控制系统模型,选用合适的硬件搭建试验系统进行了试验,取得了较好的消声效果.  相似文献   

15.
为使用有源噪声均衡技术快速优化车内稳态噪声干扰度,分析了传统枚举方法搜索有源均衡最优增益系数向量用以优化噪声品质的特点;通过主观评价建立了车内20-500Hz频率范围内稳态噪声对于人员注意力的干扰程度的噪声品质,干扰度;建立了以20-500Hz频率范围内各个临界频带线性总声压幅值为输入的噪声干扰度反向传播(BP)神经网络客观计算模型;推导了以收敛后的BP神经网络权值表示的各个输入对于噪声干扰度的灵敏度和贡献量;推导了一个频带的有源增益系数、有源均衡前幅值频谱、参考信号,与有源均衡后频带内线性总声压幅值的关系;基于这个关系和噪声干扰度的灵敏度以及贡献量提出了搜索最优增益系数的提前梯度优化方法.使用提前梯度方法有源优化车内稳态噪声干扰度,优化过程耗时较少,主观评价试验显示,优化效果较准确,车内稳态噪声干扰度改善较显著.  相似文献   

16.
针对某直列四缸发动机,运用传统的能量解耦优化法对悬置系统进行了优化,利用多体动力学仿真技术,以支承处的振动加速度最小为目标,对悬置系统进行了优化。以支承处的动态响应为评价指标,对两种优化设计的结果进行了对比。结果表明,满足解耦度高的方案很多,但这些方案的响应不一定能够满足隔振的要求,直接以支承处的响应为目标对悬置系统进行优化,结果更能满足隔振的要求。解耦度高并不是隔振一定要追求的目标,系统在各种激励作用下的响应最小,才是衡量隔振效果好坏的根本标准。  相似文献   

17.
某型商务车在行驶中车内存在很大的轰鸣噪声,对驾驶员及乘客的舒适性产生了不良的影响,对该车的销售和使用带来了不良的影响。为了查明原因,对车内声音进行信号采集及频率分析幵对传动系统进行振动特性测量。发现主减速器振动成分在50~80 Hz有明显的峰值,存在共振频率大约是50~80 Hz的模态,与车内噪声峰值处的50~80 Hz相对应。可知主减速器的振动特性导致了车室内的轰鸣噪声。为了改变主减速器的振动特性,调整主减速器悬置的刚度值幵进行振动噪声测试可以得到良好的实际效果,可使车室内轰鸣噪声大大降低。这些成果为解决本车室内轰鸣噪声提供了可实施的方案,使整车舒服性能大大提高,幵对其它车型的轰鸣噪声问题提供了可借鉴的方案。  相似文献   

18.
齿轮箱动态响应及辐射噪声数值仿真   总被引:3,自引:1,他引:2  
建立了齿轮箱传动系统及结构系统的动力有限元分析模型,综合考虑轮齿刚度激励、误差激励和啮合冲击激励等内部动态激励的影响,应用ANSYS软件对齿轮箱的固有模态和内部激励下的动态响应进行有限元数值仿真。以动态响应结果作为边界激励条件,建立了齿轮箱箱体的声学边界元分析模型,利用SYSNOISE软件中的直接边界元法求解箱体表面声压及场点辐射噪声,并对齿轮箱进行空气噪声测试。比较辐射噪声的测试结果与数值仿真结果,两者吻合良好。  相似文献   

19.
轿车车内低频噪声预测与控制   总被引:3,自引:0,他引:3  
针对某型开发中的轿车,首先建立了白车身有限元模型并进行自由模态分析,通过与模态试验结果的对比进行模型修正,在此基础上,建立了含门窗的整车模型和车身-声场耦合有限元模型,并使用虚拟样机技术提取对车身的激励载荷,然后在SYSNOISE软件中进行车内低频(20~200Hz)噪声预测,最后通过板件贡献分析找出对车内噪声主要峰值贡献较大的板件并进行结构改进,计算表明取得了良好的降噪效果。该文的研究内容为新车型开发中的降噪设计提供了可借鉴的方法。  相似文献   

20.
厢式汽车车内噪声的试验研究   总被引:3,自引:0,他引:3  
要控制汽车车内噪声,减少其对驾驶员和乘客造成的危害,首先必须找出车内的主要噪声源,本文论述了用声压法识别汽车车内主要噪声源的过程,利用声场分析技术和谱分析技术 内的主要噪声源进行了分析,通过大量的试验研究,认为发动机是导致该车车内噪声较大的主要原因,是降噪工作的重点,要进行车内噪声的控制,应首先考虑抑制发动机的辐射噪声,其次要加强车身门窗的密封性,并根据试验样车的实际结构特点,提出一系列改善车内噪  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号