首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Specific adaptors regulate the activation of initiator caspases; for example, FADD and Apaf-1 engage caspases 8 and 9, respectively. The adaptors ASC, Ipaf and RIP2 have each been proposed to regulate caspase-1 (also called interleukin (IL)-1 converting enzyme), which is activated within the 'inflammasome', a complex comprising several adaptors. Here we show the impact of ASC-, Ipaf- or RIP2-deficiency on inflammasome function. ASC was essential for extracellular ATP-driven activation of caspase-1 in toll-like receptor (TLR)-stimulated macrophages. Accordingly, ASC-deficient macrophages exhibited defective maturation of IL-1beta and IL-18, and ASC-null mice were resistant to lipopolysaccharide-induced endotoxic shock. Furthermore, activation of caspase-1 in response to an intracellular pathogen (Salmonella typhimurium) was abrogated severely in ASC-null macrophages. Unexpectedly, Ipaf-deficient macrophages activated caspase-1 in response to TLR plus ATP stimulation but not S. typhimurium. Caspase-1 activation was not compromised by loss of RIP2. These data show that whereas ASC is key to caspase-1 activation within the inflammasome, Ipaf provides a special conduit to the inflammasome for signals triggered by intracellular pathogens. Notably, cell death triggered by stimuli that engage caspase-1 was ablated in macrophages lacking either ASC or Ipaf, suggesting a coupling between the inflammatory and cell death pathways.  相似文献   

2.
Cryopyrin activates the inflammasome in response to toxins and ATP   总被引:3,自引:0,他引:3  
A crucial part of the innate immune response is the assembly of the inflammasome, a cytosolic complex of proteins that activates caspase-1 to process the proinflammatory cytokines interleukin (IL)-1beta and IL-18. The adaptor protein ASC is essential for inflammasome function, binding directly to caspase-1 (refs 3, 4), but the triggers of this interaction are less clear. ASC also interacts with the adaptor cryopyrin (also known as NALP3 or CIAS1). Activating mutations in cryopyrin are associated with familial cold autoinflammatory syndrome, Muckle-Wells syndrome and neonatal onset multisystem inflammatory disease, diseases that are characterized by excessive production of IL-1beta. Here we show that cryopyrin-deficient macrophages cannot activate caspase-1 in response to Toll-like receptor agonists plus ATP, the latter activating the P2X7 receptor to decrease intracellular K+ levels. The release of IL-1beta in response to nigericin, a potassium ionophore, and maitotoxin, a potent marine toxin, was also found to be dependent on cryopyrin. In contrast to Asc-/- macrophages, cells deficient in the gene encoding cryopyrin (Cias1-/-) activated caspase-1 and secreted normal levels of IL-1beta and IL-18 when infected with Gram-negative Salmonella typhimurium or Francisella tularensis. Macrophages exposed to Gram-positive Staphylococcus aureus or Listeria monocytogenes, however, required both ASC and cryopyrin to activate caspase-1 and secrete IL-1beta. Therefore, cryopyrin is essential for inflammasome activation in response to signalling pathways triggered specifically by ATP, nigericin, maitotoxin, S. aureus or L. monocytogenes.  相似文献   

3.
Gout-associated uric acid crystals activate the NALP3 inflammasome   总被引:4,自引:0,他引:4  
Martinon F  Pétrilli V  Mayor A  Tardivel A  Tschopp J 《Nature》2006,440(7081):237-241
Development of the acute and chronic inflammatory responses known as gout and pseudogout are associated with the deposition of monosodium urate (MSU) or calcium pyrophosphate dihydrate (CPPD) crystals, respectively, in joints and periarticular tissues. Although MSU crystals were first identified as the aetiological agent of gout in the eighteenth century and more recently as a 'danger signal' released from dying cells, little is known about the molecular mechanisms underlying MSU- or CPPD-induced inflammation. Here we show that MSU and CPPD engage the caspase-1-activating NALP3 (also called cryopyrin) inflammasome, resulting in the production of active interleukin (IL)-1beta and IL-18. Macrophages from mice deficient in various components of the inflammasome such as caspase-1, ASC and NALP3 are defective in crystal-induced IL-1beta activation. Moreover, an impaired neutrophil influx is found in an in vivo model of crystal-induced peritonitis in inflammasome-deficient mice or mice deficient in the IL-1beta receptor (IL-1R). These findings provide insight into the molecular processes underlying the inflammatory conditions of gout and pseudogout, and further support a pivotal role of the inflammasome in several autoinflammatory diseases.  相似文献   

4.
Missense mutations in the CIAS1 gene cause three autoinflammatory disorders: familial cold autoinflammatory syndrome, Muckle-Wells syndrome and neonatal-onset multiple-system inflammatory disease. Cryopyrin (also called Nalp3), the product of CIAS1, is a member of the NOD-LRR protein family that has been linked to the activation of intracellular host defence signalling pathways. Cryopyrin forms a multi-protein complex termed 'the inflammasome', which contains the apoptosis-associated speck-like protein (ASC) and caspase-1, and promotes caspase-1 activation and processing of pro-interleukin (IL)-1beta (ref. 4). Here we show the effect of cryopyrin deficiency on inflammasome function and immune responses. Cryopyrin and ASC are essential for caspase-1 activation and IL-1beta and IL-18 production in response to bacterial RNA and the imidazoquinoline compounds R837 and R848. In contrast, secretion of tumour-necrosis factor-alpha and IL-6, as well as activation of NF-kappaB and mitogen-activated protein kinases (MAPKs) were unaffected by cryopyrin deficiency. Furthermore, we show that Toll-like receptors and cryopyrin control the secretion of IL-1beta and IL-18 through different intracellular pathways. These results reveal a critical role for cryopyrin in host defence through bacterial RNA-mediated activation of caspase-1, and provide insights regarding the pathogenesis of autoinflammatory syndromes.  相似文献   

5.
Aluminium adjuvants, typically referred to as 'alum', are the most commonly used adjuvants in human and animal vaccines worldwide, yet the mechanism underlying the stimulation of the immune system by alum remains unknown. Toll-like receptors are critical in sensing infections and are therefore common targets of various adjuvants used in immunological studies. Although alum is known to induce the production of proinflammatory cytokines in vitro, it has been repeatedly demonstrated that alum does not require intact Toll-like receptor signalling to activate the immune system. Here we show that aluminium adjuvants activate an intracellular innate immune response system called the Nalp3 (also known as cryopyrin, CIAS1 or NLRP3) inflammasome. Production of the pro-inflammatory cytokines interleukin-1beta and interleukin-18 by macrophages in response to alum in vitro required intact inflammasome signalling. Furthermore, in vivo, mice deficient in Nalp3, ASC (apoptosis-associated speck-like protein containing a caspase recruitment domain) or caspase-1 failed to mount a significant antibody response to an antigen administered with aluminium adjuvants, whereas the response to complete Freund's adjuvant remained intact. We identify the Nalp3 inflammasome as a crucial element in the adjuvant effect of aluminium adjuvants; in addition, we show that the innate inflammasome pathway can direct a humoral adaptive immune response. This is likely to affect how we design effective, but safe, adjuvants in the future.  相似文献   

6.
7.
RIP3 mediates the embryonic lethality of caspase-8-deficient mice   总被引:4,自引:0,他引:4  
Apoptosis and necroptosis are complementary pathways controlled by common signalling adaptors, kinases and proteases; among these, caspase-8 (Casp8) is critical for death receptor-induced apoptosis. This caspase has also been implicated in non-apoptotic pathways that regulate Fas-associated via death domain (FADD)-dependent signalling and other less defined biological processes as diverse as innate immune signalling and myeloid or lymphoid differentiation patterns. Casp8 suppresses RIP3-RIP1 (also known as RIPK3-RIPK1) kinase complex-dependent necroptosis that follows death receptor activation as well as a RIP3-dependent, RIP1-independent necrotic pathway that has emerged as a host defence mechanism against murine cytomegalovirus. Disruption of Casp8 expression leads to embryonic lethality in mice between embryonic days 10.5 and 11.5 (ref. 7). Thus, Casp8 may naturally hold alternative RIP3-dependent death pathways in check in addition to promoting apoptosis. We find that RIP3 is responsible for the mid-gestational death of Casp8-deficient embryos. Remarkably, Casp8(-/-)Rip3(-/-) double mutant mice are viable and mature into fertile adults with a full immune complement of myeloid and lymphoid cell types. These mice seem immunocompetent but develop lymphadenopathy by four months of age marked by accumulation of abnormal T cells in the periphery, a phenotype reminiscent of mice with Fas-deficiency (lpr/lpr; also known as Fas). Thus, Casp8 contributes to homeostatic control in the adult immune system; however, RIP3 and Casp8 are together completely dispensable for mammalian development.  相似文献   

8.
The inflammasome regulates the release of caspase activation-dependent cytokines, including interleukin (IL)-1β, IL-18 and high-mobility group box 1 (HMGB1). By studying HMGB1 release mechanisms, here we identify a role for double-stranded RNA-dependent protein kinase (PKR, also known as EIF2AK2) in inflammasome activation. Exposure of macrophages to inflammasome agonists induced PKR autophosphorylation. PKR inactivation by genetic deletion or pharmacological inhibition severely impaired inflammasome activation in response to double-stranded RNA, ATP, monosodium urate, adjuvant aluminium, rotenone, live Escherichia coli, anthrax lethal toxin, DNA transfection and Salmonella typhimurium infection. PKR deficiency significantly inhibited the secretion of IL-1β, IL-18 and HMGB1 in E. coli-induced peritonitis. PKR physically interacts with several inflammasome components, including NOD-like receptor (NLR) family pyrin domain-containing 3 (NLRP3), NLRP1, NLR family CARD domain-containing protein 4 (NLRC4), absent in melanoma 2 (AIM2), and broadly regulates inflammasome activation. PKR autophosphorylation in a cell-free system with recombinant NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC, also known as PYCARD) and pro-caspase-1 reconstitutes inflammasome activity. These results show a crucial role for PKR in inflammasome activation, and indicate that it should be possible to pharmacologically target this molecule to treat inflammation.  相似文献   

9.
Zhao Y  Yang J  Shi J  Gong YN  Lu Q  Xu H  Liu L  Shao F 《Nature》2011,477(7366):596-600
Inflammasomes are large cytoplasmic complexes that sense microbial infections/danger molecules and induce caspase-1 activation-dependent cytokine production and macrophage inflammatory death. The inflammasome assembled by the NOD-like receptor (NLR) protein NLRC4 responds to bacterial flagellin and a conserved type III secretion system (TTSS) rod component. How the NLRC4 inflammasome detects the two bacterial products and the molecular mechanism of NLRC4 inflammasome activation are not understood. Here we show that NAIP5, a BIR-domain NLR protein required for Legionella pneumophila replication in mouse macrophages, is a universal component of the flagellin-NLRC4 pathway. NAIP5 directly and specifically interacted with flagellin, which determined the inflammasome-stimulation activities of different bacterial flagellins. NAIP5 engagement by flagellin promoted a physical NAIP5-NLRC4 association, rendering full reconstitution of a flagellin-responsive NLRC4 inflammasome in non-macrophage cells. The related NAIP2 functioned analogously to NAIP5, serving as a specific inflammasome receptor for TTSS rod proteins such as Salmonella PrgJ and Burkholderia BsaK. Genetic analysis of Chromobacterium violaceum infection revealed that the TTSS needle protein CprI can stimulate NLRC4 inflammasome activation in human macrophages. Similarly, CprI is specifically recognized by human NAIP, the sole NAIP family member in human. The finding that NAIP proteins are inflammasome receptors for bacterial flagellin and TTSS apparatus components further predicts that the remaining NAIP family members may recognize other unidentified microbial products to activate NLRC4 inflammasome-mediated innate immunity.  相似文献   

10.
Systems for protein degradation are essential for tight control of the inflammatory immune response. Autophagy, a bulk degradation system that delivers cytoplasmic constituents into autolysosomes, controls degradation of long-lived proteins, insoluble protein aggregates and invading microbes, and is suggested to be involved in the regulation of inflammation. However, the mechanism underlying the regulation of inflammatory response by autophagy is poorly understood. Here we show that Atg16L1 (autophagy-related 16-like 1), which is implicated in Crohn's disease, regulates endotoxin-induced inflammasome activation in mice. Atg16L1-deficiency disrupts the recruitment of the Atg12-Atg5 conjugate to the isolation membrane, resulting in a loss of microtubule-associated protein 1 light chain 3 (LC3) conjugation to phosphatidylethanolamine. Consequently, both autophagosome formation and degradation of long-lived proteins are severely impaired in Atg16L1-deficient cells. Following stimulation with lipopolysaccharide, a ligand for Toll-like receptor 4 (refs 8, 9), Atg16L1-deficient macrophages produce high amounts of the inflammatory cytokines IL-1beta and IL-18. In lipopolysaccharide-stimulated macrophages, Atg16L1-deficiency causes Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF)-dependent activation of caspase-1, leading to increased production of IL-1beta. Mice lacking Atg16L1 in haematopoietic cells are highly susceptible to dextran sulphate sodium-induced acute colitis, which is alleviated by injection of anti-IL-1beta and IL-18 antibodies, indicating the importance of Atg16L1 in the suppression of intestinal inflammation. These results demonstrate that Atg16L1 is an essential component of the autophagic machinery responsible for control of the endotoxin-induced inflammatory immune response.  相似文献   

11.
Caspases function in both apoptosis and inflammatory cytokine processing and thereby have a role in resistance to sepsis. Here we describe a novel role for a caspase in dampening responses to bacterial infection. We show that in mice, gene-targeted deletion of caspase-12 renders animals resistant to peritonitis and septic shock. The resulting survival advantage was conferred by the ability of the caspase-12-deficient mice to clear bacterial infection more efficiently than wild-type littermates. Caspase-12 dampened the production of the pro-inflammatory cytokines interleukin (IL)-1beta, IL-18 (interferon (IFN)-gamma inducing factor) and IFN-gamma, but not tumour-necrosis factor-alpha and IL-6, in response to various bacterial components that stimulate Toll-like receptor and NOD pathways. The IFN-gamma pathway was crucial in mediating survival of septic caspase-12-deficient mice, because administration of neutralizing antibodies to IFN-gamma receptors ablated the survival advantage that otherwise occurred in these animals. Mechanistically, caspase-12 associated with caspase-1 and inhibited its activity. Notably, the protease function of caspase-12 was not necessary for this effect, as the catalytically inactive caspase-12 mutant Cys299Ala also inhibited caspase-1 and IL-1beta production to the same extent as wild-type caspase-12. In this regard, caspase-12 seems to be the cFLIP counterpart for regulating the inflammatory branch of the caspase cascade. In mice, caspase-12 deficiency confers resistance to sepsis and its presence exerts a dominant-negative suppressive effect on caspase-1, resulting in enhanced vulnerability to bacterial infection and septic mortality.  相似文献   

12.
为探讨单增李斯特菌(Lisetria monocytogenes,LM)诱导小鼠滋养层细胞炎性体激活在其致小鼠流产中的作用,在体外用LM处理小鼠滋养层细胞,观察LM在细胞内的分布,检测培养基中白细胞介素(interleukin,IL)-1β水平和细胞裂解液中天冬氨酸蛋白水解酶1(cysteinyl aspartate ...  相似文献   

13.
Allergic and parasitic worm immunity is characterized by infiltration of tissues with interleukin (IL)-4- and IL-13-expressing cells, including T-helper-2 cells, eosinophils and basophils. Tissue macrophages assume a distinct phenotype, designated alternatively activated macrophages. Relatively little is known about the factors that trigger these host responses. Chitin, a widespread environmental biopolymer of N-acetyl-beta-D-glucosamine, provides structural rigidity to fungi, crustaceans, helminths and insects. Here, we show that chitin induces the accumulation in tissue of IL-4-expressing innate immune cells, including eosinophils and basophils, when given to mice. Tissue infiltration was unaffected by the absence of Toll-like-receptor-mediated lipopolysaccharide recognition but did not occur if the injected chitin was pre-treated with the IL-4- and IL-13-inducible mammalian chitinase, AMCase, or if the chitin was injected into mice that overexpressed AMCase. Chitin mediated alternative macrophage activation in vivo and the production of leukotriene B(4), which was required for optimal immune cell recruitment. Chitin is a recognition element for tissue infiltration by innate cells implicated in allergic and helminth immunity and this process can be negatively regulated by a vertebrate chitinase.  相似文献   

14.
目的观察神经降压素在高血糖条件下对巨噬细胞的影响。方法取昆明小鼠脾巨噬细胞,高糖培养液培养15d,细胞分PBS对照组和神经降压索干预组。ELISA检测法检测TNF-、IL-1β及IL-6的释放;RT—PCR检测TNF-、IL-1β及IL-6mRNA的表达。结果高糖条件下神经降压素能降低巨噬细胞TNF-、IL-1β及IL-6的释放和mRNA的表达(P〈0.05)。结论在高糖条件下,神经降压素可以通过抑制炎性细胞因子的释放影响巨噬细胞的反应。  相似文献   

15.
A role for mitochondria in NLRP3 inflammasome activation   总被引:2,自引:0,他引:2  
Zhou R  Yazdi AS  Menu P  Tschopp J 《Nature》2011,469(7329):221-225
An inflammatory response initiated by the NLRP3 inflammasome is triggered by a variety of situations of host 'danger', including infection and metabolic dysregulation. Previous studies suggested that NLRP3 inflammasome activity is negatively regulated by autophagy and positively regulated by reactive oxygen species (ROS) derived from an uncharacterized organelle. Here we show that mitophagy/autophagy blockade leads to the accumulation of damaged, ROS-generating mitochondria, and this in turn activates the NLRP3 inflammasome. Resting NLRP3 localizes to endoplasmic reticulum structures, whereas on inflammasome activation both NLRP3 and its adaptor ASC redistribute to the perinuclear space where they co-localize with endoplasmic reticulum and mitochondria organelle clusters. Notably, both ROS generation and inflammasome activation are suppressed when mitochondrial activity is dysregulated by inhibition of the voltage-dependent anion channel. This indicates that NLRP3 inflammasome senses mitochondrial dysfunction and may explain the frequent association of mitochondrial damage with inflammatory diseases.  相似文献   

16.
Chin AI  Dempsey PW  Bruhn K  Miller JF  Xu Y  Cheng G 《Nature》2002,416(6877):190-194
Host defences to microorganisms rely on a coordinated interplay between the innate and adaptive responses of immunity. Infection with intracellular bacteria triggers an immediate innate response requiring macrophages, neutrophils and natural killer cells, whereas subsequent activation of an adaptive response through development of T-helper subtype 1 cells (TH1) proceeds during persistent infection. To understand the physiological role of receptor-interacting protein 2 (Rip2), also known as RICK and CARDIAK, we generated mice with a targeted disruption of the gene coding for Rip2. Here we show that Rip2-deficient mice exhibit a profoundly decreased ability to defend against infection by the intracellular pathogen Listeria monocytogenes. Rip2-deficient macrophages infected with L. monocytogenes or treated with lipopolysaccharide (LPS) have decreased activation of NF-kappaB, whereas dominant negative Rip2 inhibited NF-kappaB activation mediated by Toll-like receptor 4 and Nod1. In vivo, Rip2-deficient mice were resistant to the lethal effects of LPS-induced endotoxic shock. Furthermore, Rip2 deficiency results in impaired interferon-gamma production in both TH1 and natural killer cells, attributed in part to defective interleukin-12-induced Stat4 activation. Our data reflect requirements for Rip2 in multiple pathways regulating immune and inflammatory responses.  相似文献   

17.
Horng T  Barton GM  Flavell RA  Medzhitov R 《Nature》2002,420(6913):329-333
Mammalian Toll-like receptors (TLRs) function as sensors of infection and induce the activation of innate and adaptive immune responses. Upon recognizing conserved pathogen-associated molecular products, TLRs activate host defence responses through their intracellular signalling domain, the Toll/interleukin-1 receptor (TIR) domain, and the downstream adaptor protein MyD88 (refs 1-3). Although members of the TLR and the interleukin-1 (IL-1) receptor families all signal through MyD88, the signalling pathways induced by individual receptors differ. TIRAP, an adaptor protein in the TLR signalling pathway, has been identified and shown to function downstream of TLR4 (refs 4, 5). Here we report the generation of mice deficient in the Tirap gene. TIRAP-deficient mice respond normally to the TLR5, TLR7 and TLR9 ligands, as well as to IL-1 and IL-18, but have defects in cytokine production and in activation of the nuclear factor NF-kappaB and mitogen-activated protein kinases in response to lipopolysaccharide, a ligand for TLR4. In addition, TIRAP-deficient mice are also impaired in their responses to ligands for TLR2, TLR1 and TLR6. Thus, TIRAP is differentially involved in signalling by members of the TLR family and may account for specificity in the downstream signalling of individual TLRs.  相似文献   

18.
IL-17-producing CD4+ T helper cells (TH17) have been extensively investigated in mouse models of autoimmunity. However, the requirements for differentiation and the properties of pathogen-induced human TH17 cells remain poorly defined. Using an approach that combines the in vitro priming of naive T cells with the ex vivo analysis of memory T cells, we describe here two types of human TH17 cells with distinct effector function and differentiation requirements. Candida albicans-specific TH17 cells produced IL-17 and IFN-γ, but no IL-10, whereas Staphylococcus aureus-specific TH17 cells produced IL-17 and could produce IL-10 upon restimulation. IL-6, IL-23 and IL-1β contributed to TH17 differentiation induced by both pathogens, but IL-1β was essential in C. albicans-induced TH17 differentiation to counteract the inhibitory activity of IL-12 and to prime IL-17/IFN-γ double-producing cells. In addition, IL-1β inhibited IL-10 production in differentiating and in memory TH17 cells, whereas blockade of IL-1β in vivo led to increased IL-10 production by memory TH17 cells. We also show that, after restimulation, TH17 cells transiently downregulated IL-17 production through a mechanism that involved IL-2-induced activation of STAT5 and decreased expression of ROR-γt. Taken together these findings demonstrate that by eliciting different cytokines C. albicans and S. aureus prime TH17 cells that produce either IFN-γ or IL-10, and identify IL-1β and IL-2 as pro- and anti-inflammatory regulators of TH17 cells both at priming and in the effector phase.  相似文献   

19.
Toll-like receptors (TLRs) are activated by pathogen-associated molecular patterns to induce innate immune responses and production of pro-inflammatory cytokines, interferons and anti-inflammatory cytokines. TLRs activate downstream effectors through adaptors that contain Toll/interleukin-1 receptor (TIR) domains, but the mechanisms accounting for diversification of TLR effector functions are unclear. To dissect biochemically TLR signalling, we established a system for isolating signalling complexes assembled by dimerized adaptors. Using MyD88 as a prototypical adaptor, we identified TNF receptor-associated factor 3 (TRAF3) as a new component of TIR signalling complexes that is recruited along with TRAF6. Using myeloid cells from TRAF3- and TRAF6-deficient mice, we show that TRAF3 is essential for the induction of type I interferons (IFN) and the anti-inflammatory cytokine interleukin-10 (IL-10), but is dispensable for expression of pro-inflammatory cytokines. In fact, TRAF3-deficient cells overproduce pro-inflammatory cytokines owing to defective IL-10 production. Despite their structural similarity, the functions of TRAF3 and TRAF6 are largely distinct. TRAF3 is also recruited to the adaptor TRIF (Toll/IL-1 receptor domain-containing adaptor-inducing IFN-beta) and is required for marshalling the protein kinase TBK1 (also called NAK) into TIR signalling complexes, thereby explaining its unique role in activation of the IFN response.  相似文献   

20.
Dysfunction of the intestinal epithelium is believed to result in the excessive translocation of commensal bacteria into the bowel wall that drives chronic mucosal inflammation in Crohn's disease, an incurable inflammatory bowel disease in humans characterized by inflammation of the terminal ileum. In healthy individuals, the intestinal epithelium maintains a physical barrier, established by the tight contact of cells. Moreover, specialized epithelial cells such as Paneth cells and goblet cells provide innate immune defence functions by secreting mucus and antimicrobial peptides, which hamper access and survival of bacteria adjacent to the epithelium. Epithelial cell death is a hallmark of intestinal inflammation and has been discussed as a possible pathogenic mechanism driving Crohn's disease in humans. However, the regulation of epithelial cell death and its role in intestinal homeostasis remain poorly understood. Here we demonstrate a critical role for caspase-8 in regulating necroptosis of intestinal epithelial cells (IECs) and terminal ileitis. Mice with a conditional deletion of caspase-8 in the intestinal epithelium (Casp8(ΔIEC)) spontaneously developed inflammatory lesions in the terminal ileum and were highly susceptible to colitis. Casp8(ΔIEC) mice lacked Paneth cells and showed reduced numbers of goblet cells, indicating dysregulated antimicrobial immune cell functions of the intestinal epithelium. Casp8(ΔIEC) mice showed increased cell death in the Paneth cell area of small intestinal crypts. Epithelial cell death was induced by tumour necrosis factor (TNF)-α, was associated with increased expression of receptor-interacting protein 3 (Rip3; also known as Ripk3) and could be inhibited on blockade of necroptosis. Lastly, we identified high levels of RIP3 in human Paneth cells and increased necroptosis in the terminal ileum of patients with Crohn's disease, suggesting a potential role of necroptosis in the pathogenesis of this disease. Together, our data demonstrate a critical function of caspase-8 in regulating intestinal homeostasis and in protecting IECs from TNF-α-induced necroptotic cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号