首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用第一性原理的经过库仑力修正的密度泛函方法,研究了CeO_2(111)表面不同氧空穴附近形成的不同的活性O_2物种.在此基础上,研究这些O_2物种对Au原子的吸附能力,得到过氧O_2-2对Au吸附能为1.8eV,吸附较强;超氧O-2对Au的吸附能为0.4eV,吸附较弱.研究结果为Au/CeO_2催化CO氧化提供了重要理论思路.  相似文献   

2.
通过采用沉淀法在碳气凝胶表面负载金属氧化物三氧化二锰,制备得到Mn_2O_3/CRF复合材料。采用X射线衍射及电镜扫描等技术对所制备的复合材料进行结构形貌表征。实验结果发现碳气凝胶具有多重片层结构且孔隙发达。通过调节锰盐的含量考察三氧化二锰负载量对复合材料电化学性能的影响作用。采用循环伏安法及充放电测试对材料的电化学性能进行测试,结果表明Mn_2O_3/CRF复合材料具有良好的电容性及较好的可逆性。当Mn_2O_3含量达15%时复合材料的比电容最大,可达118.5 F/g。通过充放电测试1000次后发现该电极的比电容依然能够保持在一稳定值上,具有较好的稳定性。  相似文献   

3.
LiNi1/3Co1/3Mn1/3O2 and Ce-doped LiNi1/3Co1/3Mn1/3O2 cathode materials were synthesized by a co-precipitation method and solid phase synthesis and characterized using X-ray diffraction(XRD) and scanning electron microscopy(SEM).The results indicated that the resultant cathode materials with different Ce content all had a good layer structure and high crystallinity.Electrochemical performance testing of the cathode materials showed that the discharge capacity increased with increasing Ce content while the initial reversible capacity attenuation decreased with Ce doping.When the Ce content of the cathode materials is x=0.2,and the current charge and discharge rate is a constant 0.2 C,the discharge capacity maintained 91% of its initial capacity after cycling 50 times.  相似文献   

4.
报道了一种利用PS模板制备CuO负载CeO_2空心球的简便方法。用扫描电镜(SEM)、能谱仪(EDS)、X射线衍射(XRD)、N_2吸附-脱吸等温线和X射线光电子能谱(XPS)对CuO/CeO_2空心球的结构特征进行了表征。为了评价CuO/CeO_2空心球之间的催化性能差异,采用工业CeO_2和CeO_2空心球,H_2温度程序还原(H_2-TPR)和CO氧化试验。结果表明,合成的样品形貌好,比表面积大,纯度高。H_2-TPR分析表明,CuO/CeO_2空心球的还原性具有多种表面活性物。CuO掺杂的CeO_2空心球表现出比CeO_2空心球和商业CeO_2在CO氧化中的更好的性能,因为铜通过氧缺陷的增加和协同效应有效增强了样品对CO催化活性。  相似文献   

5.
A spherical-like Ni0.6Co0.2Mn0.2(OH)2 precursor was tuned homogeneously to synthesize LiNi0.6Co0.2Mn0.2O2 as a cathode material for lithium-ion batteries. The effects of calcination temperature on the crystal structure, morphology, and the electrochemical performance of the as-prepared LiNi0.6Co0.2Mn0.2O2 were investigated in detail. The as-prepared material was characterized by X-ray diffraction, scanning electron microscopy, laser particle size analysis, charge-discharge tests, and cyclic voltammetry measurements. The results show that the spherical-like LiNi0.6Co0.2Mn0.2O2 material obtained by calcination at 900℃ displayed the most significant layered structure among samples calcined at various temperatures, with a particle size of approximately 10 μm. It delivered an initial discharge capacity of 189.2 mAh·g-1 at 0.2C with a capacity retention of 94.0% after 100 cycles between 2.7 and 4.3 V. The as-prepared cathode material also exhibited good rate performance, with a discharge capacity of 119.6 mAh·g-1 at 5C. Furthermore, within the cut-off voltage ranges from 2.7 to 4.3, 4.4, and 4.5 V, the initial discharge capacities of the calcined samples were 170.7, 180.9, and 192.8 mAh·g-1, respectively, at a rate of 1C. The corresponding retentions were 86.8%, 80.3%, and 74.4% after 200 cycles, respectively.  相似文献   

6.
以硝酸铈为前驱物,以尿素为助剂,采用一种简单的模板法合成了介孔氮掺杂CeO2材料.利用X射线衍射仪(XRD)、吸附-脱附仪(BET)、透射电子显微镜(TEM)和傅里叶变换红外光谱(FT-IR)等设备对合成材料进行表征.多种测试结果证明:试验得到的纳米材料具有均一的介孔结构和较高的比表面积(124.8 m2·g-1)并掺杂了氮元素.同时,测定了介孔CeO2材料对于CO2的吸附性能,并研究了氮掺杂对CeO2材料的CO2吸附性能的影响.结果表明:相比未掺杂氮的介孔CeO2,氮掺杂的介孔CeO2具有更好的CO2吸附性能和循环吸附脱附性能.  相似文献   

7.
采用溶胶-凝胶法,在Si(100)衬底上制备了3%Co掺杂CeO2薄膜,研究了不同热处理温度对Ce0.97Co0.03O2薄膜结构和光学性质的影响。X射线衍射(XRD)表明,3%Co掺杂CeO2薄膜为多晶薄膜,且未破坏CeO2原有的结构,随着退火温度的升高,晶粒尺寸逐渐增大。椭偏光谱法研究表明,Ce0.97Co0.03O2薄膜的光学常数(折射率n、消光系数k)随着退火温度增加而增大,光学带隙Eg随退火温度增加而减小,这是薄膜结构随退火温度增加发生变化所致。  相似文献   

8.
Powders of spinel LiLaxMn2—xO4 were successfully synthesized by the ultrasonic-assisted sol-gel (UASG) method. The structure and properties of LiLaxMn2—xO4 were examined by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, scanning electronic microscopy (SEM), galvanostatic charge-discharge test, and cyclic voltammetry (CV). XRD results show that the La3+ can partially replace Mn3+ in the spinel and the doped materials with La3+ have a larger lattice constant compared with pristine LiMn2O4. FT-IR indicates that the absorption peak of Mn3+−O and Mn4+− O bonds has a red and blue shift with the increase of doping lanthanum in LiLaxMn2—xO4, respectively. The charge-discharge test exhibits that the initial discharge capacity of LiLaxMn2—xO4 drops off, and the capacity retention increases gradually at C/5 discharge rate with the increase of doping lanthanum, and LiLa0.01Mn1.99O4 has a higher discharge capacity and a better cycling performance at 1C discharge rate. CV reveals that the doping La3+ is beneficial to the reversible extraction and intercalation of Li+ ions.  相似文献   

9.
采用溶胶 凝胶法合成Ce0.87Sm0.13-xPrxO2-δ(x=0.00, 0.01, 0.02)氧化物, 通过X射线衍射、 拉曼光谱、 场发射扫描电镜对氧化物进行结构表征, 利用交流阻抗谱测试电性能, 并讨论 了掺杂Pr对Ce0.87Sm0.13O2-δ微观结构和电性能的影响. 结果表 明, 掺入少量Pr3+可减少或消除晶粒表面和晶界处的坑痕或孔隙, 增加材料的致密 性, 从而降低材料的晶界电阻和电极界面电阻以及晶界电阻在总电阻中所占的比例, 提高了材料的电导率.  相似文献   

10.
A new co-precipitation route was proposed to synthesize LiNi0.8Al0.2−xTixO2 (x=0.0-0.20) cathode materials for lithium ion batteries, with Ni(NO3)2, Al(NO3)3, LiOH·H2O, and TiO2 as the starting materials. Ultrasonic vibration was used during preparing the precursors, and the precursors were protected by absolute ethanol before calcination in the air. The influences of doped-Ti content, calcination temperature and time, additional Li content, and ultrasonic vibration on the structure and properties of LiNi0.8Al0.2−xTixO2 were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and charge-discharge tests, respectively. The results show that the optimal molar fraction of Ti, calcination temperature and time, and additional molar fraction of Li for LiNi0.8Al0.2−xTixO2 cathode materials are 0.1, 700°C, 20 h, and 0.05, respectively. Ti doping facilitates the formation of the α-NaFeO2 layered structure, and ultrasonic vibration improves the electrochemical performance of LiNi0.8Al0.2−xTixO2.  相似文献   

11.
To investigate the optimum calcination temperature and cementitious properties of gangue, the microstructure of clay-containing gangue calcined at different temperatures was analyzed by X-ray diffraction (XRD), infrared spectroscopy (IR), and magnetic angle spinning nuclear magnetic resonance (MAS NMR). The results show that the structure of kaolinite in the gangue sample calcined at 500℃ is destroyed. The XRD spectra show the disappearance of illite at about 800℃ and the formation ofmullite at about 1000℃. With the increase in calcination temperature, octahedral (6-coordinated) aluminum is transformed to tetrahedral (4-coordinated) aluminum gradually. For the gangue sample calcined at 700℃, the 29Si MAS NMR sharp peak of Q4 (framework silicate-quartz) is left. Compared with kaolinite in gangue, the thermal transformed temperature of pure kaolinite is lagged. On the basis of the microstructure and cementitious properties of calcined gangue, the results can be concluded, in order to obtain metakaolinite, the optimum calcination temperature of this gangue is about 500℃, and the optimum temperature is about 700℃ for activated SiO2 and Al2O3.  相似文献   

12.
LiAlxMn2—xO4 (0≤x≤0.5) was synthesized by high temperature solid-state reaction. The structure and morphology of LiAlxMn2—xO4 were investigated by X-ray diffraction and scanning electron microscopy (SEM). The results indicate that all samples show spinel phase. The polyhedral particles turn to club-shaped, then change to small spherical, and finally become agglomerates with increasing Al content. The supercapacitive performances of LiAlxMn2—xO4 were studied by means of galvanostatic charge-discharge, cyclic voltammetry, and alternating current (AC) impedance in 2 mol·L−1 (NH4)2SO4 aqueous solution. The results show that LiAlxMn2—xO4 represents rectangular shape performance in the potential range of 0-1 V. The capacity and cycle performance can be improved by doping Al. The composition of x=0.1 has the maximum special capacitance of 160 F·g−1, which is 1.37 times that of LiMn2O4 electrode. The capacitance loss of LiAlxMn2—xO4 with x=0.1 is only about 14% after 100 cycles.  相似文献   

13.
Li1±xNi0.5Mn1.5O4(x=0.05,0) spinel powders were synthesized using a solid-state reaction.Their structures were characterized by X-ray diffraction,scanning electron microscopy and Raman spectroscopy.Their electrochemical properties for use as active cathode materials in lithium-ion batteries were measured.The LiNi0.5Mn1.5O4,Li1.05Ni0.5Mn1.5O4 and Li0.95Ni0.5Mn1.5O4 samples crystallized in Fd 3m,Fd 3m and P4332,respectively.The LiNi0.5Mn1.5O4 and Li0.95Ni0.5Mn1.5O4 samples exhibited better cycle performance than the Li1.05Ni0.5Mn1.5O4 sample,while Li0.95Ni0.5Mn1.5O4 had the worst rate performance.Thus,it appears unnecessary to introduce nominal lithium nonstoichiometry in LiNi0.5Mn1.5O4 electrode materials.  相似文献   

14.
Metal oxide (TiO2 or Co304) doped activated carbon nanofibers (ACNFs) were prepared by electrospinning. These nanofibers were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Brunner- Emmett-Teller method (BET). The results show that the average diameters of ACNFs were within the range of 200-500 nm, and the lengths were several tens of micrometers. The specific surface areas were 1146.7 m2/g for TiO2-doped ACNFs and 1238.5 m2/g for Co304-doped ACNFs, respectively. The electrospun nanofibers were used for adsorption of low concentration sulfur dioxide (SO2). The results showed that the adsorption rates of these ACNFs increased with an increase in SO2concentration. When the SO2 concentration was 1.0 μg/mL, the adsorption rates of TiO2-doped ACNFs and Co3Oa-doped ACNFs were 66.2% and 67.1%, respectively. The adsorption rate also increased as the adsorption time increased. When the adsorption time was 40 min, the adsorption rates were 67.6% and 69.0% for TiO2-doped ACNFs and Co304-doped ACNFs, respectively. The adsorption rate decreased as the adsorption temperature increased below 60℃, while it increased as the adsorption temperature increased to more than 60℃.  相似文献   

15.
In this study, aluminum oxide (Al2O3) nanoparticles (NPs) were synthesized via an electrochemical method. The effects of reaction parameters such as supporting electrolytes, solvent, current and electrolysis time on the shape and size of the resulting NPs were investigated. The Al2O3 NPs were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, thermogravimetric analysis/differential thermal analysis, energy-dispersive X-ray analysis, and ultraviolet–visible spectroscopy. Moreover, the Al2O3 NPs were explored for photocatalytic degradation of malachite green (MG) dye under sunlight irradiation via two processes: adsorption followed by photocatalysis; coupled adsorption and photocatalysis. The coupled process exhibited a higher photodegradation efficiency (45%) compared to adsorption followed by photocatalysis (32%). The obtained kinetic data was well fitted using a pseudo-first-order model for MG degradation.  相似文献   

16.
Fe5O7(OH)·4H2O ferrihydrite is a low-crystallinity antiferromagnetic material. γ-Fe2O3 (maghemite) magnetic nanoparticles were prepared from a ferrihydrite precursor, by chemically induced transformation in FeCl2/NaOH solution. The magnetization, morphology, crystal structure and chemical composition of the products were determined by vibrating sample magnetometry, transmission electron microscopy, X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy (XPS). Ferrihydrite underwent aggregation growth and transformed into α-FeO(OH) (goethite) particles, which subsequently transformed into γ-Fe2O3 nanoparticles, that became coated with NaCl. The γ-Fe2O3 particles had a flake-like morphology, when prepared from 0.01 mol/L FeCl2 and a FeCl2:NaOH molar ratio of 0.4. The γ-Fe2O3 particles were more spherical, when prepared from a FeCl2:NaOH molar ratio of 0.6. The Fe content of the flake-like particles was lower than that of the spherical particles. Their magnetizations were similar, and the coercivity of the flake-like particles was larger. The differences in morphology and magnetization were attributed to the surface effect, and the difference in coercivity to the shape effect.  相似文献   

17.
Lithium-excess manganese layered oxides, which are commonly described in chemical formula 0.5Li2MnO3·0.5LiMn0.5Ni0.5O2, were prepared by low-heating solid state reaction. The reaction mechanisms of synthesizing precursors, the decomposition mechanism, and intermediate materials in calcination were investigated by means of Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The major diffraction patterns of 0.5Li2MnO3·0.5LiMn0.5Ni0.5O2 powder calcinated at 720°C for 15 h are indexed to the hexagonal structure with a space group of 3 R $\bar 3$ m, and the clear splits of doublets at (006)/(102) and (108)/(110) indicate that the sample adopts a well-layered structure. FESEM images show that the size of the agglomerated particles of the sample ranges from 100 to 300 nm.  相似文献   

18.
The catalytic effect of metal oxide/alumina whiskers(CeO_2, Mn_3O_4, NiO, Co_3O_4, Fe_2O_3, Cr_2O_3/AW) was evaluated on their ability to drive the nitridation of silicon and to generate mesoporous fibrous silicon networks.Silicon powder with different particles size along with the catalyst was nitridized at 1300 °C for 5 h in nitrogen and nitrogen diluted with 10 vol% ammonia atmospheres. Nitridation degree of silicon up to 99% was recorded using 1.5 wt% CeO_2 and Fe_2O_3 catalysts in nitrogen-ammonia atmosphere. The catalyzed samples contain submicronic silicon nitride fibres with a diameter of 400–500 nm and a length of up to few micrometers. The compressive strength of 46 ± 1 MPa was measured for silicon samples catalyzed with nickel oxide/alumina whiskers and nitridized in N_2/10 vol%NH_3 atmosphere. Porous silicon nitride networks were produced with 45–52% porosity, pore sizes in the range of 370–1200 nm and median pore in the range of 495–1655 nm.  相似文献   

19.
Nanoparticles of Ce0.6Zr0.35Y0.05O2 (CZY) solid solution have been prepared by the CTAB (hexadecyl-trimethyl ammonium bromide), CTAB-EG (ethylene glycol) templating, and CTAB-EG-NaCl (in which the pores of the precursor synthesized by the CTAB-EG method is filled by a certain amount of NaCl) method, respectively. The physical properties of these materials were characterized by means of tech-niques such as X-ray diffraction (XRD), high resolution scanning electron microscopy (HRSEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and N2 adsorp-tion-desorption measurements. The CZY samples synthesized by the above three methods display wormhole-like mesoporous morphology and cubic crystal structures. The materials are narrow in pore size distribution (averaged pore diameter = 5.3―7.1 nm), high in surface areas (95―119 m2/g), and large in pore volumes (0.16―0.18 cm3/g). It has been demonstrated that the introduction of NaCl is capable of retaining the pore structures of solid nanomaterials at high-temperature calcination.  相似文献   

20.
Investigation of the Ce-Mn conversion coating on 6063 aluminium alloy   总被引:1,自引:0,他引:1  
In this paper, the sustainable Ce-Mn chemical conversion coating was fabricated on 6063 aluminium alloy by means of Ce(NO3)3 and KMnO4 as the inhibitors and NaF as the accelerator. The morphologies, composition and valence state of the coating were analyzed by scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and X-ray photoelectron spectroscopy (XPS), respectively. The results indicated that the Ce-Mn conversion coating was formed. The anticorrosion of the coating was evaluated in 3.5 wt.% NaCl aqueous solution at room temperature by using polarization curve and electrochemical impedance spectroscopy (EIS). It indicated that the treated surface presented better anticorrosion behavior in chloride media than on the original material surface. The corrosion resistance of Ce-Mn conversion coating was about equal to the trivalent chromium conversion coating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号