首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
针对自动编码器仅对单个数据所包含的内容信息进行特征提取,忽略了数据之间结构信息的问题,提出一种基于异构融合和判别损失的深度图聚类网络.首先,将两个自动编码器获取的异质信息进行融合,解决了采用单一自动编码器提取特征时的信息丢失问题;其次,在聚类训练模块基于类内分布一致性设计判别损失函数,使模型可以端到端地训练,避免了两阶段训练方法中出现特征提取与聚类算法提前假设不匹配的情况;最后,在6个常用数据集上进行实验并验证了该方法的有效性.实验结果表明,与现有的大多数深度图聚类模型相比,该方法在非图数据集和图数据集上的聚类性能有明显提升.  相似文献   

2.
提出一种新颖的多视图子空间聚类算法,不再对包含各种噪声以及冗余信息的原始数据进行特征融合,而是通过对不同视图的低维子空间表示进行融合,得到一个公共的低维子空间表示.将这个子空间表示作为相似度矩阵进行谱聚类,以得到更优的聚类效果.在3个广泛使用的多视图基准数据集上进行了实验,实验结果证明了所提出算法的有效性.  相似文献   

3.
针对不完整多视图聚类存在的缺陷,提出一种融合自表示和投影映射的统一框架.首先,利用自表示和样本存在指示矩阵学习一致相似图,它反映了样本间的公共相似关系;其次,利用投影映射将样本矩阵投影到超球面上,得到公共低维表示;最后,将两者通过谱表示嵌入在一起,解决了因多视图数据缺失引起的不完整多视图聚类问题.该算法在真实数据集上的实验结果优于其他算法,证明了算法的有效性.  相似文献   

4.
多视图聚类旨在利用不同视图间互为差异、互相补充的信息对数据对象进行聚类。近年来,多视图聚类作为一项重要的无监督机器学习方法和数据挖掘技术,在众多领域得到了广泛关注。文章对现有的多视图聚类模型与算法进行了梳理,将其归纳为六个方面,并对其进行了详细论述。进一步,对复杂环境下多视图聚类任务面临的挑战进行了展望,以期推动该领域的不断创新与发展。  相似文献   

5.
6.
为了探索非凸方法在多视图聚类方面的应用, 本文基于非凸替换函数和子空间学习, 提出非凸张量多视图子空间聚类算法. 该算法不仅对多视图数据进行自表示学习来达到学习低维子空间的目的. 而且采用带有旋转的张量结构对张量的高阶关联进行挖掘. 同时, 使用非凸函数替换以及广义奇异值算子进行张量最小化问题的求解, 从而实现对张量秩的近似. 最后基于联合优化所得关联/仿射矩阵实现聚类操作. 在不同类型的多视图数据集上的大量实验验证了该方法的聚类效果.  相似文献   

7.
针对图像单一特征分割结果的适应局限性,提出融合多特征和谱聚类集成的图像分割方法(MFSC-IS).首先对图像进行基于粒计算的多特征子分割;然后将分割结果映射到超图,利用谱聚类集成算法得到最终分割结果.实验结果表明,与Gpb(Globalized probability of boundary)算法相比,融合多特征和谱聚类集成方法可以得到一个相对较好的分割结果.  相似文献   

8.
为了探索多标签数据集中每个标签所具有的特定特征,针对标签特定特征进行有效的利用,提出基于聚类提升树的多标签学习方法(multi-label leaning based on boosting clustering trees,MLL-BCT).建立MLL-BCT整体框架,通过引入聚类特征树来挖掘数据样本之间的相关性,以...  相似文献   

9.
聚类是机器学习和数据挖掘中的重要课题。近年来,深度神经网络(Deep Neural Networks,DNN)在各种聚类任务中受到广泛关注。特别是半监督聚类,在大量无监督数据中仅引入少量先验信息即可显著提高聚类性能。然而,这些聚类方法忽略了定义的聚类损失可能破坏特征空间,从而导致非代表性的无意义特征。针对现有半监督深度聚类的特征学习过程中局部结构保持有所欠缺的问题,本文提出一种改进的半监督深度嵌入聚类(Improved Semi-supervised Deep Embedded Clustering,ISDEC)算法,采用欠完备自动编码器在特征表达学习的同时,保持数据的内在局部结构;通过综合聚类损失、成对约束损失和重构损失,对聚类标签分配和特征表达进行联合优化。在包括基因数据在内的若干高维数据集上的实验结果表明,本方法的聚类性能比现有方法更好。  相似文献   

10.
针对可能性聚类对初始化参数设置依赖性较强的问题,提出一种基于中心自动融合的可能性聚类算法,并证明了算法中尺度因子的多尺度性质.该算法通过建立中心的相关性判定准则,根据数据自身分布特点动态调整聚类数目与结构,通过引入尺度参数实现对数据的多分辨率分析.与传统的模糊和可能性聚类算法相比,该算法摆脱了对聚类数目及初始化中心或隶属度矩阵设置的依赖性,易于控制.人造数据和真实数据实验结果表明,该算法能自动确定数据中不同尺度下的聚类结构,具有识别不同大小聚类结构的能力.  相似文献   

11.
提出了一种基于相邻视点图像融合的多视点图像编码方法。该方法首先将多幅同一场景的多视点视频图像进行融合,得到一幅含有大部分信息的融合图像、边信息和视差矢量。之后对融合图像作基于NSCT的类SPIHT编,对边信息和视差矢量进行熵编码。该编码方案,通过图像融合,有效降低了多视点视频图像传输和存储过程中的信息量。解码后的图像视觉质量和实验结果表明,该方法能更有效地表示图像的边缘信息,获得比传统编码方法更高的峰值信噪比,具有实践意义。  相似文献   

12.
针对单一声学特征和k-means算法在说话人聚类技术中的局限性,为了更好地表达说话人的个性信息并提高说话人聚类的准确率,将特征融合和AE-SOM神经网络应用于说话人聚类中,提出一种改进的说话人聚类算法.该算法通过对语音信号特征分析,将MFCC特征参数和LPCC特征参数相结合,从而完善说话人的个性信息.并在k-means...  相似文献   

13.
基于自动编码器的短文本特征提取及聚类研究   总被引:3,自引:0,他引:3  
针对短文本的特点, 提出一种基于深层噪音自动编码器的特征提取及聚类算法。该算法利用深度学习网络, 将高维、稀疏的短文本空间向量变换到新的低维、本质特征空间。首先在自动编码器的基础上, 引入L1范式惩罚项来避免模型过分拟合, 然后添加噪音项以提高算法的鲁棒性。实验结果表明, 将提取的文本特征应用于短文本聚类, 显著提高了聚类的效果, 有效地解决了短文本空间向量的高维、稀疏问题。  相似文献   

14.
针对传统肺癌计算机辅助诊断系统中肺结节检出过程烦琐,且存在假阳性高的问题,提出一种基于多视角深度信念网络的肺结节识别方法。该方法首先将肺结节进行三维重建并将重建后不同大小的肺结节归一到不同尺度的立方体中,然后将不同视角的2.5D切片作为深度信念网络的输入数据,最后通过不同的融合策略完成对肺结节的识别。在肺部图像数据库联盟(LIDC)数据集上大量实验表明:相比于传统肺癌识别系统本文方法敏感性为(92.8±0.25)%,平均每组病例假阳性个数为2.4±0.3,该方法能有效降低肺结节自动检测过程中的假阳性率。  相似文献   

15.
针对非合作通信条件下缺少标签数据的通信辐射源个体识别问题,提出了一种基于深度聚类的通信辐射源个体识别方法。利用自编码器网络强大的特征提取和数据重构能力对原始I/Q数据进行表征学习,提取个体识别的指纹特征,同时将表征学习过程和特征聚类过程进行联合优化,使表征学习和特征聚类契合度更高,更好地完成无标签条件下的通信辐射源个体识别。通过对5种ZigBee设备采集的信号进行实验,结果表明在信噪比高于0 dB时,可以达到85%以上的识别准确率,证明了本文方法的有效性和稳定性。  相似文献   

16.
基于张量脸的多姿态人脸识别算法   总被引:1,自引:0,他引:1  
提出了一种新的多姿态人脸识别算法,在原有的张量脸算法(TensorFaces)基础上结合了流形学习方法和统计学聚类的方法,首先将训练图库中不同姿态的人脸图像通过保局映射投影(LPP)的姿态聚类特性投影到二维空间上,然后将待测图库中的未知姿态人脸图像投影到该二维空间并找到其最近邻的两个姿态,根据两个最近邻姿态库作为训练库修正张量脸识别算法的判别系数.实验结果表明,该算法的识别率优于原有的张量脸算法.  相似文献   

17.
提出一种使用模糊聚类融合线性子空间特征和Gabor小波特征的人脸识别方法. 通过分析样本在子空间的聚类情况, 对处于不同聚类边界的样本采用Gabor特征进行二次识别. 实验结果表明, 该方法能在保证识别率的前提下, 有效减少平均识别时间.  相似文献   

18.
由于红外序列图像目标与背景的对比度低,图像的边缘模糊并且灰度级动态范围小,采用何种特征描述目标成为跟踪的关键。深度特征和梯度特征是目前大部分跟踪算法采用的主要特征,然而深度特征提取的目标语义信息关注类间分类(Intra-Class),忽略类内差别,容易受到相似背景(Distractor)干扰;梯度特征作为局部区域特征不易受背景干扰,但不能适应目标的剧烈形变。基于这2种特征的互补性,提出一种融合深度特征和梯度特征的红外目标跟踪算法。深度特征与梯度特征被分别用来表征目标的语义信息与局部结构信息,增强了对任意目标的表征能力;利用不同特征建立的跟踪模型进一步提高了跟踪的鲁棒性。通过建立模型互助机制,利用深度特征跟踪模型与梯度特征跟踪模型的互补性,对目标实施了精准的定位。实验中,选取了最新的红外视频跟踪数据库(VOT-TIR2016)用来验证文中算法的有效性,结果表明:和当今主流跟踪算法相比,算法在精确度上获得了3.8%的提升,在成功率上获得了4.3%的提升,能够有效处理跟踪中相似背景与形变的影响。  相似文献   

19.
提出一种基于深度学习的多模型(卷积神经网络和卷积深信度网络)融合目标跟踪算法.该算法在提取候选粒子方面,使用选择性搜索和粒子滤波的方法.CVPR2013跟踪评价指标(50个视频序列、30个跟踪算法)验证了:该算法在跟踪中能有效地缓解目标物体由于遮挡、光照变化和尺度变化等因素造成的跟踪丢失情况的发生.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号