首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
利用群论与同余理论, 计算一类m阶循环群被4阶循环群扩张的亚循环群之间的同态个数, 并给出该类亚循环群的自同态个数. 所得结果验证了该类亚循环群满足Asai和Yoshida猜想.  相似文献   

2.
结合代数数论的知识,计算了一类 Sylow p-子群为循环群的10pn阶非交换群之间的同态个数,以及这类群到四元数群的同态个数。作为应用,验证了这两类群是满足Asai和Yoshida猜想的。  相似文献   

3.
基于群理论下一类非交换群的群结构和元素的阶,利用数论中同余的基本概念,计算一类非交换群之间的所有同态个数,进而验证T.Asai&T.Yoshida猜想对这类非交换群成立.  相似文献   

4.
得出了两个素数乘积阶亚循环群的全自同构群的具体结构及其元素的表示.  相似文献   

5.
文章给出了李群上的亚同态的定义,并对李群上的亚同态的有关性质进行了研究,得出了一些有意义的结果.  相似文献   

6.
本文利用抽象代数的基本理论,结合初等数论的有关知识,对两个有限循环群之间存在的所有同态映射进行了分类研究,给出并证明了计算其总数的一个数学公式。  相似文献   

7.
基于群理论中中心二面体群与二面体群的群结构以及元素的性质,利用代数学及数论的相关理论, 计算中心二面体群与二面体群之间的同态个数。作为应用,验证了 T.Asai & T.Yoshida 猜想对此类群成立。  相似文献   

8.
计算了一类m阶循环群通过2p阶循环群扩张的亚循环群之间的同态个数,并给出了此类亚循环群自同态半群的阶。作为应用,验证了T.Asai和T.Yohsdia猜想对此类亚循环群成立。  相似文献   

9.
基于群理论下一类非交换群的群结构以及元素的阶,计算一类Sylow p-子群为循环群的2qpn(q为奇素数)阶非交换群的自同态个数和自同构个数,并验证其自同态个数满足T.Asai和T.Yoshida 猜想。  相似文献   

10.
对群上亚同态的几点注记   总被引:2,自引:0,他引:2  
设G,G’是两个同构的群,先给出了由群G的亚同态构造群G’的亚同态的一种方法,并且证明了群G上的亚同态与群G’上的亚同态是一一对应的.再通过另外一种方法,简化了文献[3]中一个主要结果的证明.  相似文献   

11.
关于群的弱同态   总被引:8,自引:1,他引:8  
映射:f:G1→G2叫做群G1到群G2的一个弱同态映射,如果对任意a,b∈G1,等式:f(ab)=f(a)f(b)和f(ab)=f(b)f(a)至少有一个成立。该文证明群的弱同态映射不是同态映射就是反同态映射。  相似文献   

12.
利用群作用的等价类, 将上循环集与群同态进行联系. 通过上循环集对两个有限群之间的同态个数进行刻画, 证明了对任意有限群A,G, 如果A,G的上循环集中元素的个数可被|A|和|G|的最大公因子整除, 则A,G之间的同态个数可被|A|和|G|的最大公因子整除.  相似文献   

13.
给出pmqα阶特殊亚循环Frobenius群的特征标表及其特征标块.  相似文献   

14.
qp阶亚循环群的弱q-DCI性   总被引:2,自引:0,他引:2  
研究了qp阶亚循环群的弱m-DCI性(其中q与p是满足2相似文献   

15.
采用矩阵方法, 描述了二元域F2上一般线性群GLn(F2< /sub>)(n≥3)到任意域K上一般线性群GLn(K)的同态形式. 当Ch K≠2时, 给出 了GL3(F2)到GL3(K)的同态形式, 并证明当n≥4时, GL n(F2)到GLn(K)的同态是平 凡的; 当Ch K=2且n≥3时, 给出了GLn(F2)到GLn(K) 的同态形式.  相似文献   

16.
该文给出了Fuzy群的同态和同构的定义,并得到了它们的一些性质;主要的结果有Fuzzy群的同态和同构的分解定理和表现定理以及Fuzy群的同态基本定理.  相似文献   

17.
利用有限群论和初等数论确定一类10pn阶非交换群的元素特征, 并构建四元数群到该类10pn阶非交换群的所有同态映射. 通过计算这些同态映射的个数, 验证这两类群满足Asai和Yoshida猜想.  相似文献   

18.
利用有限群论和初等数论确定一类10pn阶非交换群的元素特征, 并构建四元数群到该类10pn阶非交换群的所有同态映射. 通过计算这些同态映射的个数, 验证这两类群满足Asai和Yoshida猜想.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号