首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
高锰TRIP钢热变形行为研究   总被引:1,自引:0,他引:1  
通过单轴压缩实验,研究了高锰TRIP钢(Fe15Mn3Si3Al)在800~1050℃温度范围内、应变速率ε.=0.01~5.0s-1条件下的热变形行为和组织变化,讨论了热变形参数对流变应力和显微组织的影响.结果表明:动态再结晶只在较高变形温度和低应变速率下发生.实验钢对温度和应变速率都很敏感,而应变速率对实验钢的热变形行为影响较大.高锰TRIP钢的表观应力指数n=3.909,变形激活能Q=353.167kJ/mol.根据实验数据,建立了高锰TRIP钢高温变形的热加工方程.  相似文献   

2.
采用Thermorestor-W热模拟试验机,对Cr15Mn9Cu2Ni1N不锈钢进行热压缩试验,研究其在变形温度950~1 200℃,应变速率0.01~2.5s-1条件下的动态再结晶行为.当变形温度高于1 000℃后,Cr15Mn9Cu2Ni1N不锈钢的变形以动态再结晶为主,且随温度升高,峰值应力对应的应变减小.利用应变硬化率-应力曲线确定的材料动态再结晶临界应力σc、峰值应力σp、饱和应力σss(e)和稳态应力σs的数值,回归得到临界动态再结晶应变εc与Zener-Hollomon参数的关系,并确定临界应力与峰值应力的关系.通过建立Cr15Mn9Cu2Ni1N不锈钢的热变形动态再结晶Avrami模型,分析应变速率和变形温度对Avrami曲线的影响,表明应变速率比温度对Cr15Mn9Cu2Ni1N不锈钢的动态再结晶Avrami曲线的影响更加显著.  相似文献   

3.
采用Gleeble-1500热模拟试验机进行了T91钢的压缩试验,研究了变形温度为1100~1250℃、应变速率为0.01~1 s-1时该钢的变形行为,分析了流变应力与应变速率和变形温度之间的关系,计算了高温变形时应力指数和变形激活能,并采用Zener-Hollomon参数法构建该钢高温塑性变形的本构关系,绘制了动态再结晶图和热加工图.结果表明:在试验变形条件范围内,其真应力-真应变曲线呈双峰特征;钢中发生了明显的动态再结晶,且再结晶类型属于连续动态再结晶.T91钢的热变形激活能为484 kJ.mol-1,利用加工图确定了热变形的流变失稳区,结合力学性能,可以优先选择的变形温度为1200~1 250℃,应变速率不高于0.1 s-1.  相似文献   

4.
热变形行为的研究对材料动态再结晶发生的判断以及热加工工艺参数的制定具有很重要的理论参考价值。对Fe-Mn-Al-C钢进行单道次压缩变形实验,利用Gleeble-3500热模拟试验机完成,变形温度为1 123~1 373 K,应变速率为0.01,0.1,1,10 s-1,测定真应力-真应变曲线,结合变形组织分析不同变形条件对动态再结晶的影响,建立热变形本构方程。结果表明:变形温度越高,应变速率越低,越有利于动态再结晶的进行;实验用钢的热变形激活能和表观应力指数分别为343.351 k J/mol和4.683,本构方程为ε=3.926 2×10~(13)[sinh(0.006σ)]~(4.6830)exp(-343.35/8.314T)  相似文献   

5.
通过高温压缩热模拟实验,研究了50Mn18Cr4V高锰无磁钢在变形温度为900~1100℃、应变速率为01~10s-1条件下的热变形行为.结果表明,VC第二相的应变诱导析出对50Mn18Cr4V的热变形行为产生重要影响.当变形温度为900~1000℃,应变速率为5s-1时,VC第二相不能充分析出,与应变速率为1s-1相比,对动态再结晶的阻碍作用减弱.应尽量使实验钢在高温段完成热加工,并适当提高应变速率.随着变形温度降低到950℃以下,材料的塑性变差,若以较低的应变速率变形,容易造成晶界开裂;应变速率过高,容易造成流变失稳,因此,以5s-1的应变速率变形,较为适宜.确定了50Mn18Cr4V无磁钢的再结晶激活能为7769kJ/mol.通过实验数据回归,建立了实验钢的高温变形抗力模型.  相似文献   

6.
在Gleeble-1500D热模拟试验机上,采用高温等温压缩试验,在变形温度650~850℃、应变速率0.001~10 s-1和总压缩应变量50%的条件下,对Cu-Cr-Zr合金的流变应力行为进行研究.通过应力-应变曲线和显微组织图分析了合金在不同应变速率、不同应变温度下的变化规律.结果表明:应变速率和变形温度对合金再结晶影响较大,变形温度越高,合金越容易发生动态再结晶;应变速率越小,合金也同样容易发生动态再结晶,并且对应的峰值应力也越小.从流变应力、应变速率和温度的相关性,得出了该合金热压缩变形时的热变形激活能Q和流变应力方程.研究分析Cu-Cr-Zr合金的热加工性能,可为生产实践提供理论指导与借鉴.  相似文献   

7.
通过单道次压缩试验,对Fe-Mn-C系孪生诱导塑性钢(TWIP钢),在800~1 000℃,应变速率0.01~10.0 s-1条件下的热变形行为及组织演变规律进行了研究.实验结果表明,升高温度和降低应变速率均可促进奥氏体发生动态再结晶.根据实验所得流变应力曲线,由热变形方程计算得到了TWIP钢热变形激活能Q=421.37 kJ/mol.并在此基础上得到了TWIP钢高温变形的热加工方程.采用Z参数预测了动态再结晶的临界条件,当Z≤9.94×1018时TWIP钢易发生动态再结晶,具有较好的热加工性能.  相似文献   

8.
稀土Er对ZK60镁合金变形行为的影响   总被引:1,自引:0,他引:1  
采用Gleeble-1500D热模拟试验机研究了稀土元素Er对ZK60镁合金的热压缩变形行为的影响。通过引入Zener-Hollomon参数和双曲正弦函数构建了ZK60和ZK60-1.0Er镁合金的本构方程,同时采用应变硬化率θ-流变应力σ关系曲线确定动态再结晶发生的临界应力σc值。结果表明:ZK60和ZK60-1.0Er两种镁合金在热压缩变形过程中,随着变形温度T的升高,压缩流变应力σ值均减小;随着应变速率ε?的增加,流变应力σ值均增加。添加稀土元素Er使得ZK60镁合金热压缩变形流变应力σ值和应力指数n值增加,在变形温度为160~320℃时提高了发生动态再结晶的临界应力σc值,稀土相的存在促进了再结晶晶粒的形核,降低了平均变形激活能Qˉ值。  相似文献   

9.
316LN热变形行为及动态再结晶晶粒的演变规律   总被引:2,自引:0,他引:2  
采用热压缩试验研究了316LN不锈钢在温度1250℃-900℃,应变速率0.005s^-1~0.5s^-1,变形程度50%条件下的变形行为和组织演变;分析了变形参数对应力-应变曲线的影响规律,计算获得了该钢热变形应力指数和激活能;并通过动态再结晶晶粒演变规律的研究,建立了该钢热变形动态再结晶图,以及动态再结晶晶粒演变规律模型。研究结果可为316LN不锈钢锻造过程晶粒细匀化的控制提供科学的依据。  相似文献   

10.
利用MMS-300热模拟试验机开展单道次压缩实验和光学显微组织观察,研究了S38MnSiV非调质钢在温度为1173~1423K及应变速率为001~10s-1条件下的热变形行为,获得了应变速率和变形温度对该钢动态再结晶行为及组织的影响规律,按照双曲正弦方法确定了实验钢的热变形激活能和本构方程.结果表明:变形温度越高,应变速率越低,越有利于动态再结晶的发生;随着动态再结晶的进行,奥氏体平均晶粒尺寸随应变的增加逐渐减小;当应力达到稳态时,奥氏体晶粒尺寸不再随应变而发生变化.  相似文献   

11.
为了解决Cr20 Ni80电热合金锻造开裂的问题,在Gleeb-1500D热模拟试验机上对该合金进行热压缩试验,研究变形温度为900~1220℃,应变速率为0.001~10 s-1条件下的热变形行为,并根据动态材料模型建立合金的热加工图.合金的真应力-真应变曲线呈现稳态流变特征,峰值应力随变形温度的降低或应变速率的升高而增加;热变形过程中稳态流变应力可用双曲正弦本构方程来描述,其激活能为371.29 kJ·mol-1.根据热加工图确定了热变形流变失稳区及热变形过程的最佳工艺参数,其加工温度为1050~1200℃,应变速率为0.03~0.08 s-1.优化的热加工工艺在生产中得到验证.  相似文献   

12.
利用MMS-300热模拟试验机,对20Mn2SiV非调质钢在变形温度为900~1 100℃及应变速率为0.01~10s-1条件下的流变应力进行了研究,讨论了Z参数与动态再结晶之间的关系,并建立了该钢的热变形流变应力模型.结果表明:采用Z参数可以判断动态再结晶发生与否,当lnZ≤32.76时,20Mn2SiV非调质钢发生动态再结晶;根据动态再结晶发生与否以及应变是否达到动态再结晶临界应变值,分别建立了不同情况下的流变应力模型,模型拟合效果良好.  相似文献   

13.
SCM435钢热变形动态再结晶动力学模型参数的确定   总被引:1,自引:0,他引:1  
通过分析冷镦钢SCM435在温度为950~1150℃、应变速率为0.1~1s-1范围内发生动态再结晶的热/力模拟试验数据,利用其应变硬化速率θ与流变应力σ的θ-σ曲线,准确确定了其发生动态再结晶的临界应变εc、峰值应变εp、临界应力σc和峰值应力σp,用应力-应变(σ-ε)曲线方法计算SCM435钢的动态再结晶Avrami动力学曲线和时间指数n.结果表明:SCM435钢发生动态再结晶的临界应变与峰值应变的平均比值εc/εp=0.73,动态再结晶Avrami时间指数平均值n=1,91;在温度950~1150℃,应变速率0.1~1 s-1范围内,应变速率是SCM435钢的动态再结晶动力学敏感因素,温度对其影响不大;动态再结晶率50%的时间t50与应变速率成反比.  相似文献   

14.
采用热模拟试验机对Ti-5Al-5Mo-5V-1Cr-1Fe合金进行等温压缩试验,获得变形温度为750~900℃和应变速率为0.001~1 s 1时的真应力真应变曲线,并运用修正后的试验数据建立真应变为0.7的热加工图。通过显微组织观察,分析合金的变形机理,确定热变形失稳区。研究结果表明:Ti-5Al-5Mo-5V-1Cr-1Fe合金加工温度范围较宽,当加工温度低于800℃且变形速率大于0.1 s 1时易发生绝热剪切,造成流变失稳;随着变形温度升高,功率耗散因子η有增大趋势,合金的流动软化机制由动态回复逐渐变为动态再结晶,显微组织也随之细化、均匀。  相似文献   

15.
通过单道次压缩热模拟实验,在MMS-200热模拟实验机上测定了EH36船板钢的应力-应变曲线,研究了变形温度、变形速率和应变对实验钢动态再结晶行为的影响,并建立了实验钢的动态再结晶/变形抗力模型.结果表明,变形温度越高,应变速率越低,应变量越大,越有利于动态再结晶的发生;计算出的动态再结晶激活能和变形抗力与实测值吻合良好,证明了模型的正确性.  相似文献   

16.
采用Gleeble-1500热模拟试验机上对B72LX、B82LX钢进行变形温度为850℃~1050℃应变速率为0.1~10 1/s的压缩变形试验,研究了这两个钢种的再结晶规律。并通过回归分析得出峰值应力σm、应变εp、动态再结晶临界应变cε与温度补偿因子Z的关系式,从而获得动态再结晶产生的条件及动态再结晶激活能。  相似文献   

17.
一种低碳微合金管线钢的热变形行为   总被引:1,自引:1,他引:0  
采用MMS-200热力模拟实验机进行高温压缩试验,研究一种低碳微合金管线钢在应变速率为0.1,1.0和5.0s-1,变形温度为800~1150℃条件下的热变形行为及流变应力特征,利用透射电镜和光学显微镜观察高温压缩变形后的组织,采用Zener-Hollomon参数的双曲正弦函数来描述实验钢的热变形流变应力行为。研究结果表明:流变应力随着变形温度的升高而降低,随着变形速率的提高而增大;实验钢在高温压缩过程中存在动态回复和动态再结晶2种软化机制,在较高变形温度和较低应变速率条件下,才发生动态再结晶;在获得的流变应力解析式中,结构因子A、应力水平参数α和应力指数n分别为2.6×1018s-1,0.012MPa-1和5.73,热变形激活能为518.73kJ/mol。  相似文献   

18.
采用Gleeble-1500热/力模拟试验机进行压缩试验,研究了不同变形条件下微量稀土对T91耐热钢动态再结晶行为的影响.分析绘制了稀土加入前后实验钢的真应力–真应变曲线、再结晶–温度–时间图、再结晶图及功率耗散图,并计算了高温下实验钢的再结晶激活能.在变形温度为850~1100℃,变形速率为0.004~10 s 1变形条件下,变形温度越高和变形速率越低,动态再结晶越容易发生.稀土加入会产生固溶强化,稀土元素与碳原子发生交互作用,且在晶界处或晶界附近偏聚,使变形抗力与峰值应变均增大,再结晶激活能由354.6 kJ.mol 1提高到397.2 kJ.mol 1.另外,稀土会显著推迟再结晶发生时间,扩大再结晶的时间间隔,推迟再结晶动力学过程.  相似文献   

19.
对BFe30-1-1合金在变形温度为750~1000℃,应变速率为0.01~10s—1的条件下使用Gleeble-1500D热模拟机进行高温热压缩试验,研究其热加工行为.获得了该合金在高温下的真应力-真应变曲线,并分析了其流变应力的变化规律.构建了BFe30-1-1合金的热变形方程,基于动态材料模型绘制其热加工图,并结合热压缩后的合金微观组织分析热加工图.结果表明:变形条件对加工图有明显影响,在较低的应变速率和较高的温度条件下,能量耗散效率较大.在应变量分别为0.2、0.4、0.6、0.8的热加工图基础上,分析合金在不同变形条件下的动态再结晶组织特性及流变失稳显微组织,最终得到该合金最佳热加工温度为830~950℃,应变速率为0.01~0.05s—1.  相似文献   

20.
利用Gleeble-1500热模拟试验机对Mn-Nb-Cu-B低碳贝氏体钢进行单道次压缩实验,研究其在温度为1 000~1 150℃和应变速率为0.01~0.1 s-1条件下的动态再结晶行为.通过加工硬化率和应变的关系曲线确定该贝氏体钢发生动态再结晶的临界条件,并建立动态再结晶临界应变模型和峰值应变模型.根据应力-应变曲线数据确定不同变形条件下该贝氏体钢的动态再结晶的体积分数,并利用该体积分数建立动态再结晶动力学模型.研究结果表明:Mn-Nb-Cu-B低碳贝氏体钢高温变形存在动态再结晶现象,且随着变形温度的升高,应变速率的降低,动态再结晶临界应变量减小,更容易发生动态再结晶.采用回归法确定该贝氏体钢的动态再结晶激活能为328 kJ/mol,并获得该贝氏体钢的热加工方程.该低碳贝氏体钢发生动态再结晶的临界应变与峰值应变的平均比值εc/εp为0.63.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号