首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
聚合物锂离子电池负极电化学性能研究   总被引:1,自引:0,他引:1  
制备了聚合物锂离子电池用负极 ,对其首次充放电效率、比容量、不同放电倍率下放电性能进行了测试 .首次充放电容量分别为 340 m A· h·g- 1和 310 m A·h· g- l,库仑效率可达 91% .以锂锰氧为正极组装了聚合物锂离子电池 ,通过测试表明制备的聚合物锂离子电池具有较好的循环性和大电流放电能力 .所制负极可应用于聚合物锂离子电池中 .  相似文献   

2.
分别以蔗糖、柠檬酸、酒石酸为碳源,采用高温固相法制备了LiFePO4/C正极复合材料.利用X-射线衍射(XRD)、热重差热分析(TGA)、扫描电子显微镜(SEM)、拉曼光谱(Raman)、充放电测试、循环伏安及交流阻抗测试系统研究了不同碳源包覆对材料微结构及电化学性能的影响.XRD结果表明合成的材料均具有单一的橄榄石型结构;热重差热分析表明3个样品的质量度分数均为7%.SEM结果发现以蔗糖为碳源的LiFePO4/C团聚现象严重,以柠檬酸为碳源的LiFePO4/C颗粒最大,以酒石酸为碳源的LiFePO4/C颗粒最小.Raman表明以蔗糖或酒石酸为碳源的LiFePO4/C具有很好的石墨化碳.电化学性能表明以酒石酸为碳源的LiFePO4/C具有最佳的倍率和循环性能.  相似文献   

3.
从LiMnPO4的结构与电化学反应机理、制备方法及稳定性方面对锂离子电池正极材料LiMnPO4进行了介绍.针对LiMnPO4的制备方法进行了详细的概述,并分析了这些制备方法的优缺点.橄榄石型结构的LiMnPO4与LiFePO4具有比较接近的理论比容量,而LiMnPO4的氧化还原电位较高,约4.1 V(vs Li/Li+),同样条件下能够提供较高的比能量.但LiMnPO4的电子和离子电导率较低,直接导致了材料的电化学性能较差,这就限制了其实际应用.人们付出了很大的努力致力于提高该材料的电化学性能,如通过不同的合成方法减小材料的尺寸至纳米级,包碳,球磨,阳离子掺杂等.掺杂和包覆导电碳被认为是获得性能优良的LiMnPO4的有效方法.  相似文献   

4.
使用廉价的三价铁Fe2O3为铁源,以蔗糖为还原剂和导电剂,通过热还原法制备了LiFePO4/C复合材料。运用TGA-DAT曲线对反应机制进行了分析,利用X射线衍射(XRD)、扫描电镜(SEM)、恒流充放电和循环伏安测试等测试手段对不同覆碳量合成材料进行了表征和电化学性能检测。结果表明:所合成的LiFePO4均为纯相,其中含碳1.07%的样品0.2C倍率下的放电比容量为143.32 mAh/g。  相似文献   

5.
以氢氧化锂为锂源,在真空条件下合成了锂离子电池正极材料LiFePO4.采用X射线衍射(XRD)、扫描电镜(SEM)对样品进行表征,并对其进行电化学交流阻抗(EIS)、循环伏安(CV)和恒流充放电等电化学性能测试,并与以碳酸锂为锂源制得的材料进行比较.结果表明:两种锂源在真空条件下合成的LiFePO4均具有单一的橄榄石相,而以氢氧化锂为锂源所得的材料粒度更小且分布更均匀,比容量更高.此外,以氢氧化锂为锂源时,通过在原料预烧后的前驱体中引入碳源得到的LiFePO4/C复合正极材料在0.2 C和1.0 C时的首次放电容量分别为138.4 mAh/g和126.8mAh/g,循环30次后仍能分别释放出135.6 mAh/g和123.9 mAh/g的可逆容量.  相似文献   

6.
电动汽车锂离子电池低温加热方法研究   总被引:5,自引:0,他引:5  
为提高锂离子动力电池的低温充放电性能,以锰酸锂80A.h电池单体为研究对象,提出了宽线金属膜的加热方法,并对电池单体进行低温充放电实验,建立电池加热模型,采用等效电池加热实验验证模型的正确性,对233K低温环境下的电池单体进行加热和放电实验.实验结果表明,采用宽线金属膜加热法可显著提高电池的低温性能.  相似文献   

7.
综述了用于锂离子电池的以聚丙烯腈-甲基丙烯酸甲酯P(AN-MMA)共聚物为基体的凝胶聚合物电解质的研究现状和进展,讨论了P(AN-MMA)基电解质的主要问题和解决这些问题的可能措施.  相似文献   

8.
通过固相法合成了LiFePO4 /聚并苯(PAS)复合材料.纯的LiFePO4电导率仅为(0.1~1)×10-9 S/cm,合成LiFePO4/PAs复合材料电导率为2.0 S/cm,复合材料的电导率提高了10个数量级.LiFePO4/PAS复合材料具有优异的电化学性能,在室温1C倍率下首次放电容量为140 mA·h/g,经过200次循环后容量仍保持最初容量的97.14%.说明通过包覆PAS材料极大地提高了LiFePO4的大电流充、放电容量和循环性能.  相似文献   

9.
4 V级锂离子电池用橄榄石型LiMnPO4的电化学性能   总被引:2,自引:0,他引:2  
对反应物与中间产物进行球磨, 采用固相反应法在600 ℃合成了掺碳的橄榄石型LiMnPO4. 通过XRD表征样品的晶体结构, 采用SEM观察样品的微观形貌, 利用电化学手段测试样品的充放电性能, 并对样品进行交流阻抗和扩散系数的测定. 研究结果表明, 得到的样品物相较纯, 粒径小(100~200 nm)且分布均匀, 首次放电容量接近100 mA·h·g-1, 但样品循环容量衰减快, 大电流放电性能较差. 通过对样品的交流阻抗测试发现, 电化学反应阻抗随放电的进行而不断增大, 说明材料的荷电量越高, 界面电化学反应速度越快. 扩散系数的测量结果表明, 充电态和放电态的扩散系数分别1.2×10-12和5×10-13 cm2·s-1, 表明晶格中锂离子的浓度越高, 越容易脱出.  相似文献   

10.
采用sol-gel法制备了纳米级Co3O4材料,并用SEM表征了由此材料制备的电极的形貌. 对材料进行了恒流充放电测试,并通过充放电曲线研究了材料的容量和倍率性能. 结果表明,制备的钴氧化物的颗粒尺寸在20 nm左右,材料的可逆容量和电化学循环稳定性较目前商业化的碳材料有较为明显的提高,材料在1 C倍率下的首次可逆容量为964 mAh/g,第60次循环的可逆容量仍可达到786 mAh/g.  相似文献   

11.
随着新能源汽车的日渐普及导致动力电池的需求量和报废量呈现爆发式增长,对废旧电池正极材料进行修复再生利用具有重要的环保和经济意义。通过传统浸出方式回收正极材料中有价金属能够实现正极材料的资源化利用,但存在流程复杂、经济效益低、污染严重等问题;而仅通过补锂的方式修复得到的再生正极材料存在循环稳定性差的缺陷。本研究通过固相烧结法补充废旧LiFePO4中损失的锂离子,并加入葡萄糖促进 Fe3+还原的同时在LiFePO4表面形成碳包覆层。此外,在补锂过程中加入Mg2+实现修复再生和掺杂改性同步进行。结果表明,再生过程中同步掺入Mg2+可以明显提高晶体结构稳定性以及锂离子扩散系数。再生LiFePO4正极材料表现出优异的电化学性能。在1 C倍率下,Mg-RLFP的首次放电容量为131.8 mAh?g?1,200圈和400圈容量保持率分别达到98.8%和92.2%;在0.1 C和10 C的倍率下,Mg-RLFP的放电容量分别为142.9·mAh?g?1和95.5 mAh?g?1。研究结果表明,补锂过程中采用碳包覆与镁离子掺杂同步改性的策略能够有效地修复废旧LiFePO4正极材料。  相似文献   

12.
采用一步高温固相合成法制备橄榄石型锂离子电池正极材料LixFe(1-y)MoyPO4/C,着重研究了不同锂铁比和铁位钼元素掺杂对材料的充放电性能的影响.结果表明:当Li:Fe=1.03:1时,磷酸铁锂的放电比容量和充放电循环性能最佳,首次放电比容量最高为100.8mAh/g;在富锂基础上,Mo掺杂的浓度为Li1.033Mo0.01Fe0.97PO4/C时,材料表现出的电化学性能最好,所能达到的最大比容量为144.8mAh/g.  相似文献   

13.
软包装锂离子电池性能研究   总被引:1,自引:0,他引:1  
研究了以塑料包装取代金属外壳所实现的新型软包装锂离子电池的电化学性能.从软包装锂离子电池的倍率放电性能、电池的高低温放电能力和充放电循环稳定性等方面的研究表明,软包装锂离子电池具有良好电化学性能.软包装锂离子电池既不同于金属外壳锂离子电池,也不同于聚合物锂离子电池,是锂离子电池的一种新型设计.  相似文献   

14.
凝胶聚合物电解质(GPE)因具有良好的力学加工性能、安全性能和较高的室温离子电导率而受到广泛关注。针对国内外通过修饰聚合物基体、优化有机增塑剂、改善锂盐、改善复合离子液体、加入无机粒子的方式对GPE的改性研究进行了相关总结与分析。  相似文献   

15.
16.
以FePO4.2H2O,Li2CO3和蔗糖为原料,采用碳热还原法合成LiFePO4/C材料.高温合成时采用木炭粉代替惰性气体保护以降低成本,对样品进行X射线衍射分析(XRD)、扫描电子显微镜(SEM)测试和电化学性能分析.结果表明:当合成温度为650℃时合成的材料具有较好的电化学性能,0.1倍率下首次放电比容量为153.0 mA.h/g,30次充放电循环后容量保持率为95%,具有良好的循环性能.  相似文献   

17.
探讨在EC+PC+DMC复合溶剂体系中LiODFB-TEABF4复合盐电解液与LiFePO4锂离子电池及AC双电层电容器的相容性规律.研究结果表明:在LiODFB基电解液中加入TEABF4能显著提高电解液的电导率;对于LiFePO4电池体系,电解液中的TEABF4参与了SEI膜的成膜过程,但TEABF4浓度过高不利于电极材料的容量的提高;对于AC电容器体系,加入TEABF4可以有效改善电容器的双电层储能行为,同时显著提高电容,当TEABF4浓度为0.3 mol/L时,电容达到最大,比不添加TEABF4的纯LiODFB盐电解液的电容大.  相似文献   

18.
文章采用高温固相法合成尖晶石LiMn2O4,并采用液相包覆的方法对其进行改性处理。采用XRD、SEM、XPS以及电池测试系统等,研究了所制备材料的结构、组成、性能和包覆机理。实验结果表明:表面处理后的LiMn2O4循环性能显著提高,以A12O3对尖晶石LiMn2O4进行表面包覆,使LiMn2O4颗粒不与电解液直接接触,可以防止锰离子溶解在电解液中,获得结构稳定、循环性能优异的锂离子电池正极材料;同时Al2O3会和电解液中微量的HF反应,减小了HF对锰离子溶解的加速作用。  相似文献   

19.
对锂离子电池用聚甲基丙烯酸甲酯(PMMA)基凝胶聚合物电解质制备实验教学方法进行了研究. 阐述了锂离子电池实验原理与实验方法,总结了实验特点和教学特点,探索了通过凝胶聚合物电解质制备的实验教学培养和提高学生的动手能力、激发学生科学研究兴趣的方法. 通过该实验的实施,有助于激发学生形成发现问题及解决问题的能力,培养学生的创新能力,可取得良好的教学效果.  相似文献   

20.
纳米材料在锂离子电池中的研究进展   总被引:1,自引:0,他引:1  
柴小琴  刘长久 《广西科学》2004,11(3):225-229
锂离子电池的核心是选择高能储锂电极材料,纳米材料以其独特的物理化学性能应用作为锂离子电池电极材料,具有减小极化,增大充放电电流密度,提高放电容量和循环稳定性等优点,有利于高性能、高容量和高功率电池的发展。纳米电极材料具有非常广阔的应用前景,但目前已有的研究基本处于实验开发阶段,且主要集中在制备方法上,其微观结构和电化学性能沿需进一步研究探讨。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号