首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
D B Light  J D Corbin  B A Stanton 《Nature》1990,344(6264):336-339
Atrial natriuretic peptide, acting through its second messenger guanosine 3',5'-cyclic monophosphate (cGMP), suppresses Na+ absorption across the renal inner-medullary collecting duct and increases urinary Na+ excretion. Patch clamp studies show that cGMP reduces Na+ absorption by inhibiting an amiloride-sensitive cation channel in the apical membrane. We have now examined, using the patch clamp technique, the molecular mechanisms of cGMP inhibition. Cyclic GMP directly and specifically reduced the probability of a single channel being open (open probability, Po) by 39% (inhibition constant, Ki = 7.6 x 10(-7) M) by a phosphorylation-independent mechanism. Cyclic GMP also inhibited the channel by activating cGMP-dependent protein kinase (cGMP-kinase). Exogenous cGMP-kinase completely inhibited the channel by a phosphorylation-dependent mechanism. Activation of a pertussis toxin-sensitive G protein by GTP-gamma-S blocked cGMP-kinase inhibition of the channel. By contrast, cGMP-kinase inhibition of Po was completely reversed by GTP-gamma-S. Taken together with the results of a previous study showing that a G protein activates the cation channel, these data indicate that cGMP-kinase and a G protein sequentially regulate the cation channel. Our results show that atrial natriuretic peptide, acting through cGMP, inhibits Na+ absorption across the inner-medullary collecting duct by a dual mechanism, and that cGMP-kinase inhibits the channel by a pathway involving a G protein.  相似文献   

2.
The GTP-binding protein, Go, regulates neuronal calcium channels   总被引:9,自引:0,他引:9  
J Hescheler  W Rosenthal  W Trautwein  G Schultz 《Nature》1987,325(6103):445-447
In neuronal cells, opioid peptides and opiates inhibit neurotransmitter release, which is a calcium-dependent process. They also inhibit adenylyl cyclase, presumably via the membrane signal-transducing component, Gi, a guanine nucleotide-binding protein (G-protein). No causal relationship between these two events has yet been demonstrated. Besides Gi, membranes of neuronal tissues contain large amounts of Go, a G-protein with unknown function. Both G-proteins are heterotrimers consisting of alpha-, beta- and gamma-subunits; the alpha-subunits can be ADP-ribosylated by an exotoxin from Bordetella pertussis (PT), which modification inhibits receptor-mediated activation of the G-protein. It was recently shown that noradrenaline, dopamine and gamma-aminobutyric acid (GABA) inhibit the voltage-dependent calcium channels in dorsal root and sympathetic ganglia; this inhibition is mimicked by intracellular application of guanine nucleotides and blocked by PT, suggesting the involvement of a G-protein. Here we report an inhibitory effect of the opioid D-Ala2, D-Leu5-enkephalin (DADLE) on the calcium current (ICa) in neuroblastoma X glioma hybrid cells (N X G cells). Pretreatment with PT almost completely abolishes the DADLE effect. The effect is restored by intracellular application of Gi and Go. As the alpha-subunit of Go (with or without beta-gamma complex) is 10 times more potent than Gi, we propose that Go is involved in the functional coupling of opiate receptors to neuronal voltage-dependent calcium channels.  相似文献   

3.
B Miller  M Sarantis  S F Traynelis  D Attwell 《Nature》1992,355(6362):722-725
Arachidonic acid is released by phospholipase A2 when activation of N-methyl-D-aspartate (NMDA) receptors by neurotransmitter glutamate raises the calcium concentration in neurons, for example during the initiation of long-term potentiation and during brain anoxia. Here we investigate the effect of arachidonic acid on glutamate-gated ion channels by whole-cell clamping isolated cerebellar granule cells. Arachidonic acid potentiates, and makes more transient, the current through NMDA receptor channels, and slightly reduces the current through non-NMDA receptor channels. Potentiation of the NMDA receptor current results from an increase in channel open probability, with no change in open channel current. We observe potentiation even with saturating levels of agonist at the glutamate- and glycine-binding sites on these channels; it does not result from conversion of arachidonic acid to lipoxygenase or cyclooxygenase derivatives, or from activation of protein kinase C. Arachidonic acid may act by binding to a site on the NMDA receptor, or by modifying the receptor's lipid environment. Our results suggest that arachidonic acid released by activation of NMDA (or other) receptors will potentiate NMDA receptor currents, and thus amplify increases in intracellular calcium concentration caused by glutamate. This may explain why inhibition of phospholipase A2 blocks the induction of long-term potentiation.  相似文献   

4.
J A Strong  A P Fox  R W Tsien  L K Kaczmarek 《Nature》1987,325(6106):714-717
The modulation of voltage-activated calcium currents by protein kinases provides excitable cells with a mechanism for regulating their electrical behaviour. At the single channel level, modulation of calcium current has, to date, been characterized only in cardiac muscle, where beta-adrenergic agonists, acting through cyclic AMP-dependent protein kinase, enhance the calcium current by increasing channel availability and opening. We now report that enhancement of calcium current in the peptidergic bag cell neurons of Aplysia by protein kinase C occurs through a different mechanism, the recruitment of a previously covert class of calcium channel. Under control conditions, bag cell neurons contain only one class of voltage-activated calcium channel with a conductance of approximately 12 pS. After exposure to agents that activate protein kinase C, these neurons also express a second class of calcium channel with a different unitary conductance (approximately 24 pS) that is never seen in untreated cells.  相似文献   

5.
6.
Cytoplasmic free calcium concentration([Ca2+]c) in pollen cells of Lilium daviddi is measured with confocal laser scanning microscopy to investigate the effect of heterotrimeric G protein (G protein) on [Ca2+]c and the possible signal transduction pathway of G protein triggering cellular calcium signal. After application, cholera toxin (CTX), an agonist of G protein, triggers a transient increase of [Ca2+]c in pollen cells, and evokes a spatial-temporal characteristic calcium dynamics; while pertussis toxin (PTX), a G protein antagonist, leads to the decrease of [Ca2+]c. Both L-type Ca2+ channel blocker verapamil and inhibitor of IP3 receptor heparin inhibit CTX-induced [Ca2+]c increase. The results show that G protein may play a role in the modulation of [Ca2+]c through enhancing the extracellular Ca2+ influx and releasing of Ca2+ from intracellular stores.  相似文献   

7.
The phenomenon of long-term potentiation (LTP), a long lasting increase in the strength of synaptic transmission which is due to brief, repetitive activation of excitatory afferent fibres, is one of the most striking examples of synaptic plasticity in the mammalian brain. In the CA1 region of the hippocampus, the induction of LTP requires activation of NMDA (N-methyl-D-aspartate) receptors by synaptically released glutamate with concomitant postsynaptic membrane depolarization. This relieves the voltage-dependent magnesium block of the NMDA-receptor ion channel, allowing calcium to flow into the dendritic spine. Although calcium has been shown to be a necessary trigger for LTP (refs 11, 12), little is known about the immediate biochemical processes that are activated by calcium and are responsible for LTP. The most attractive candidates have been calcium/calmodulin-dependent protein kinase II (CaM-KII) (refs 13-16), protein kinase C (refs 17-19), and the calcium-dependent protease, calpain. Extracellular application of protein kinase inhibitors to the hippocampal slice preparation blocks the induction of LTP (refs 21-23) but it is unclear whether this is due to a pre- and/or postsynaptic action. We have found that intracellular injection into CA1 pyramidal cells of the protein kinase inhibitor H-7, or of the calmodulin antagonist calmidazolium, blocks LTP. Furthermore, LTP is blocked by the injection of synthetic peptides that are potent calmodulin antagonists and inhibit CaM-KII auto- and substrate phosphorylation. These findings demonstrate that in the postsynaptic cell both activation of calmodulin and kinase activity are required for the generation of LTP, and focus further attention on the potential role of CaM-KII in LTP.  相似文献   

8.
Gamma-aminobutyric acid (GABA)B receptors couple to Go to inhibit N-type calcium channels in embryonic chick dorsal root ganglion neurons. The voltage-independent inhibition, mediated by means of a tyrosine-kinase pathway, is transient and lasts up to 100 seconds. Inhibition of endogenous RGS12, a member of the family of regulators of G-protein signalling, selectively alters the time course of voltage-independent inhibition. The RGS12 protein, in addition to the RGS domain, contains PDZ and PTB domains. Fusion proteins containing the PTB domain of RGS12 alter the rate of termination of the GABA(B) signal, whereas the PDZ or RGS domains of RGS 12 have no observable effects. Using primary dorsal root ganglion neurons in culture, here we show an endogenous agonist-induced tyrosine-kinase-dependent complex of RGS12 and the calcium channel. These results indicate that RGS12 is a multifunctional protein capable of direct interactions through its PTB domain with the tyrosine-phosphorylated calcium channel. Recruitment of RGS proteins to G-protein effectors may represent an additional mechanism for signal termination in G-protein-coupled pathways.  相似文献   

9.
C E Jahr  C F Stevens 《Nature》1987,325(6104):522-525
There is considerable evidence that glutamate is the principal neurotransmitter that mediates fast excitatory synaptic transmission in the vertebrate central nervous system. This single transmitter seems to activate two or three distinct types of receptors, defined by their affinities for three selective structural analogues of glutamate, NMDA (N-methyl-D-aspartate), quisqualate and kainate. All these agonists increase membrane permeability to monovalent cations, but NMDA also activates a conductance that permits significant calcium influx and is blocked in a voltage-dependent manner by extracellular magnesium. Fast synaptic excitation seems to be mediated mainly by kainate/quisqualate receptors, although NMDA receptors are sometimes activated. We have investigated the properties of these conductances using single-channel recording in primary cultures of hippocampal neurons, because the hippocampus contains all subtypes of glutamate receptors and because long-term potentiation of synaptic transmission occurs in this structure. We find that four or more distinct single-channel currents are evoked by applying glutamate to each outside-out membrane patch. These conductances vary in their ionic permeability and in the agonist most effective in causing them to open. Clear transitions between all the conductance levels are observed. Our observations are compatible with the model that all the single channel conductances activated by glutamate reflect the operation of one or two complex molecular entities.  相似文献   

10.
Calcium entry through voltage-activated Ca2+ channels is important in regulating many cellular functions. Activation of these channels in many cell types results in feedback regulation of channel activity. Mechanisms linking Ca2+ channel activity with its downregulation have been described, but little is known of the events responsible for the enhancement of Ca2+ current that in many cells follows Ca2+ channel activation and an increase in cytoplasmic Ca2+ concentration. Here we investigate how this positive feedback is achieved in single smooth muscle cells. We find that in these cells voltage-activated calcium current is persistently but reversibly enhanced after periods of activation. This persistent enhancement of the Ca2+ current is mediated by activation of calmodulin-dependent protein kinase II because it is blocked when either the rise in cytoplasmic Ca2+ is inhibited or activation of calmodulin-dependent protein kinase II is prevented by specific peptide inhibitors of calcium-calmodulin or calmodulin-dependent protein kinase II itself. This mechanism may be important in different forms of Ca2+ current potentiation, such as those that depend on prior Ca2+ channel activation or are a result of agonist-induced release of Ca2+ from internal stores.  相似文献   

11.
Sakaba T  Neher E 《Nature》2003,424(6950):775-778
Second messenger cascades involving G proteins and calcium are known to modulate neurotransmitter release. A prominent effect of such a cascade is the downmodulation of presynaptic calcium influx, which markedly reduces evoked neurotransmitter release. Here we show that G-protein-mediated signalling, such as through GABA (gamma-amino butyric acid) subtype B (GABA(B)) receptors, retards the recruitment of synaptic vesicles during sustained activity and after short-term depression. This retardation occurs through a lowering of cyclic AMP, which blocks the stimulatory effect of increased calcium concentration on vesicle recruitment. In this signalling pathway, cAMP (functioning through the cAMP-dependent guanine nucleotide exchange factor) and calcium/calmodulin cooperate to enhance vesicle priming. The differential modulation of the two forms of synaptic plasticity, presynaptic inhibition and calcium-dependent recovery from synaptic depression, is expected to have interesting consequences for the dynamic behaviour of neural networks.  相似文献   

12.
Kirichok Y  Navarro B  Clapham DE 《Nature》2006,439(7077):737-740
In mammals, sperm cells become motile during ejaculation and swim up the female reproductive tract. Before fertilization and to overcome various barriers, their motility must be hyperactivated, a motion that is characterized by vigorous asymmetric tail beating. Hyperactivation requires an increase in calcium in the flagella, a process that probably involves plasmalemmal ion channels. Numerous attempts in the past two decades to understand sperm cell channels have been frustrated by the difficulty of measuring spermatozoan transmembrane ion currents. Here, by using a simple approach to patch-clamp spermatozoa and to characterize whole-spermatozoan currents, we describe a constitutively active flagellar calcium channel that is strongly potentiated by intracellular alkalinization. This current is not present in spermatozoa lacking the sperm-specific putative ion channel protein, CatSper1. This plasma membrane protein of the six transmembrane-spanning ion channel superfamily is specifically localized to the principal piece of the sperm tail and is required for sperm cell hyperactivation and male fertility. Our results identify CatSper1 as a component of the key flagellar calcium channel, and suggest that intracellular alkalinization potentiates CatSper current to increase intraflagellar calcium and induce sperm hyperactivation.  相似文献   

13.
Multiple D2 dopamine receptors produced by alternative RNA splicing   总被引:16,自引:0,他引:16  
Dopamine receptor belong to a large class of neurotransmitter and hormone receptors that are linked to their signal transduction pathways through guanine nucleotide binding regulatory proteins (G proteins). Pharmacological, biochemical and physiological criteria have been used to define two subcategories of dopamine receptors referred to as D1 and D2. D1 receptors activate adenylyl cyclase and are coupled with the Gs regulatory protein. By contrast, activation of D2 receptors results in various responses including inhibition of adenylyl cyclase, inhibition of phosphatidylinositol turnover, increase in K+ channel activity and inhibition of Ca2+ mobilization. The G protein(s) linking the D2 receptors to these responses have not been identified, although D2 receptors have been shown to both copurify and functionally reconstitute with both Gi and Go related proteins. The diversity of responses elicited by D2-receptor activation could reflect the existence of multiple D2 receptor subtypes, the identification of which is facilitated by the recent cloning of a complementary DNA encoding a rat D2 receptor. This receptor exhibits considerable amino-acid homology with other members of the G protein-coupled receptor superfamily. Here we report the identification and cloning of a cDNA encoding an RNA splice variant of the rat D2 receptor cDNA. This cDNA codes for a receptor isoform which is predominantly expressed in the brain and contains an additional 29 amino acids in the third cytoplasmic loop, a region believed to be involved in G protein coupling.  相似文献   

14.
K G Beam  C M Knudson  J A Powell 《Nature》1986,320(6058):168-170
Contraction of a vertebrate skeletal muscle fibre is triggered by electrical depolarization of sarcolemmal infoldings termed transverse-tubules (t-tubules), which in turn causes the release of calcium from an internal store, the sarcoplasmic reticulum (SR). The mechanism that links t-tubular depolarization to SR calcium release remains poorly understood. In principle, this link might be provided by the prominent slow calcium current that has been described in skeletal muscle cells of adult frogs and rats. However, blocking this current does not abolish the depolarization-induced contractile responses of frog muscle, and the function of this slow calcium current is unknown. Here we describe measurements of calcium currents in developing skeletal muscle cells of normal rats and mice, and of mice with muscular dysgenesis, a mutation that causes excitation-contraction (E-C) coupling to fail. We find that a slow calcium current is present in skeletal muscle cells of normal animals but absent from skeletal muscle cells of mutant animals. The effect of the mutation is specific to the slow calcium current of skeletal muscle; a fast calcium current is present in developing skeletal muscle cells of both normal and mutant animals, and slow calcium currents are present in cardiac and sensory neurones of mutant animals. We believe this to be the first report of a mutation affecting calcium currents in a multicellular organism. The effects of the mutation raise important questions about the relationship between the slow calcium current and skeletal muscle E-C coupling.  相似文献   

15.
为研究与淀粉样前体蛋白(am y lo id precursorprote in,APP)无关的早老素引发阿尔茨海默氏病(A lzhe im er’s d isease,AD)的致病机理,用双电极电压钳方法记录果蝇体壁肌肉细胞的钙通道。结果显示:在几种早老素突变体果蝇中,无论是正常条件下培养还是将幼虫暴露在持续稳定的高温下,电压激活的C a2 电流都没有受到影响。而撤去高温条件后,C a2 尾电流失活速度明显变慢,但其他过程不受影响。说明在正常或应激条件下并不需要早老素来维持C a2 通道的功能,但是在撤去应激条件后的一段时期内,早老素对于C a2 通道的正常功能是必要的。提示早老素对于细胞在波动环境中维持正常功能起重要作用。  相似文献   

16.
T Tanabe  A Mikami  S Numa  K G Beam 《Nature》1990,344(6265):451-453
There are dihydropyridine (DHP)-sensitive calcium currents in both skeletal and cardiac muscle cells, although the properties of these currents are very different in the two cell types (for simplicity, we refer to currents in both tissues as L-type). The mechanisms of depolarization-contraction coupling also differ. As the predominant voltage-dependent calcium current of cardiac cells, the L-type current represents a major pathway for entry of extracellular calcium. This entry triggers the subsequent large release of calcium from the sarcoplasmic reticulum (SR). In contrast, depolarization of skeletal muscle releases calcium from the SR without the requirement for entry of extracellular calcium through L-type calcium channels. To investigate the molecular basis for these differences in calcium currents and in excitation-contraction (E-C) coupling, we expressed complementary DNAs for the DHP receptors from skeletal and cardiac muscle in dysgenic skeletal muscle. We compared the properties of the L-type channels produced and showed that expression of a cardiac calcium channel in skeletal muscle cells results in E-C coupling resembling that of cardiac muscle.  相似文献   

17.
J M Bekkers  C F Stevens 《Nature》1989,341(6239):230-233
A CENTRAL assumption about long-term potentiation in the hippocampus is that the two classes of glutamate-receptor ion channel, the N-methyl-D-aspartate (NMDA) and the kainate/quisqualate (non-NMDA) subtypes, are co-localized at individual excitatory synapses. This assumption is important because of the perceived interplay between NMDA and non-NMDA receptors in the induction and expression of long-term potentiation: the NMDA class, by virtue of its voltage-dependent channel block by magnesium and calcium permeability, provides the trigger for the induction of long-term potentiation, whereas the actual enhancement of synaptic efficacy is thought to be provided by the non-NMDA class. If both receptor subtypes are present at the one synapse, such cross-modulation could occur rapidly and locally through diffusible factors. By measuring miniature synaptic currents in cultured hippocampal neurons we show that the majority (approximately 70%) of the excitatory synapses on a postsynaptic cell possess both kinds of receptor, although to different extents. Of the remaining excitatory synapses, approximately 20% contain only the non-NMDA subtype and the rest possess only NMDA receptors. This finding provides direct evidence for co-localization of glutamate-receptor subtypes at individual synapses, and also points to the possibility that long-term potentiation might be differentially expressed at each synapse according to the mix of receptor subtypes at that synapse.  相似文献   

18.
We report the molecular cloning and sequence of a phosphoinositide-specific phospholipase C (PI-PLC), an enzyme that is of particular interest because of its central role in cell signal transduction. The signals in question are those delivered by hormones to their cell-surface receptors that activate PI-PLC by means of a guanine nucleotide binding protein. Activation of the enzyme leads to the hydrolysis of phosphatidylinositol 4,5-bisphosphate to two second messengers, 1,2-diacylglycerol and inositol 1,4,5-trisphosphate, the second of which ultimately mobilizes internal pools of calcium. There are at least five PI-PLC isoenzymes, whose differences in structure and function are unknown. We have focused on isoenzyme I, which we have recently purified and characterized from guinea pig uterus. We have now determined the sequence of a full length complementary DNA of this isoenzyme from the rat. Although the sequence has little similarity with the only other sequenced PI-PLC isoenzyme, it has a surprising degree of similarity to thioredoxins, protein co-factors in thiol-dependent redox reactions.  相似文献   

19.
Wolfe JT  Wang H  Howard J  Garrison JC  Barrett PQ 《Nature》2003,424(6945):209-213
Low-voltage-activated (LVA) T-type calcium channels have a wide tissue distribution and have well-documented roles in the control of action potential burst generation and hormone secretion. In neurons of the central nervous system and secretory cells of the adrenal and pituitary, LVA channels are inhibited by activation of G-protein-coupled receptors that generate membrane-delimited signals, yet these signals have not been identified. Here we show that the inhibition of alpha1H (Ca(v)3.2), but not alpha(1G) (Ca(v)3.1) LVA Ca2+ channels is mediated selectively by beta2gamma2 subunits that bind to the intracellular loop connecting channel transmembrane domains II and III. This region of the alpha1H channel is crucial for inhibition, because its replacement abrogates inhibition and its transfer to non-modulated alpha1G channels confers beta2gamma2-dependent inhibition. betagamma reduces channel activity independent of voltage, a mechanism distinct from the established betagamma-dependent inhibition of non-L-type high-voltage-activated channels of the Ca(v)2 family. These studies identify the alpha1H channel as a new effector for G-protein betagamma subunits, and highlight the selective signalling roles available for particular betagamma combinations.  相似文献   

20.
R Sagi-Eisenberg  H Lieman  I Pecht 《Nature》1985,313(5997):59-60
It has been proposed that protein kinase C mediates cellular responses evoked by external stimuli, leading to alterations in internal free calcium concentrations. We have shown previously that histamine-secreting rat basophilic leukaemia cells (RBL-2H3), which degranulate on aggregation of the receptors for immunoglobulin IgE, contain a Ca2+- and phospholipid-dependent protein kinase (kinase C). The partially purified enzyme is activated directly by the tumour-promoting phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA). In intact RBL cells, TPA potentiates histamine release induced by the Ca2+-ionophore A23187 (similar to the synergy reported for platelets, neutrophils and rat peritoneal mast cells). Although TPA at concentrations below 15 nM synergizes with the antigen, higher TPA concentrations inhibit secretion. This selective inhibition suggested that kinase C is involved in both the activation and termination of the secretory process. To examine this possibility, we have determined the effect of TPA on changes in free cytosolic Ca2+ concentration during antigen-induced release. We report here that TPA completely blocks the increase in Ca2+ concentration induced by antigen. Our results strongly suggest that protein kinase C is involved in the regulation of receptor-dependent Ca2+ signalling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号