共查询到20条相似文献,搜索用时 46 毫秒
1.
具体计算了一维无限深势阱,线性谐振子和氢原子三个实例中坐标中坐标几率分布与动量几率分布的关系,得出了系统的动量几率分布宽度与坐标几率分布宽度的乘积,符合测不准关系的结论。 相似文献
2.
张宁 《石河子大学学报(自然科学版)》1997,1(3):241-245
对海森伯测不准原理进行了深入地分析和研究,指出了一些文献上对这一量子力学中的重要原理在角度与角动量方面应用上的错误,并讨论了近些年来的一些新进展。此外,还给出了一个新公式,得到了在这一领域的较好结果。 相似文献
3.
该文对已被证明的厄密算符(Hermitian Operators)对应力学量(实软科学 量)的测不准关系进一步探讨,推导出了正则算符(Normal Operators)对应力学量(复数力学量)的测不准关系表达式,并阐明了式的物理含义,这一结果能将厄密算符对应实力学量作为特例包括在内。 相似文献
4.
相对于Rindler匀加速观测者,通常的闵氏真空态可被看做一个热浴,因此在坐标表象下计算了一维Rindler谐振子的广义测不准关系,计算表明,在闵氏真空中,对于Rindler匀加速观测者,除存在通常的量子扰动外,还存在与其加速度相关的热扰动。 相似文献
5.
6.
7.
薛本文 《天津科技大学学报》1991,(2)
从海森伯测不准关系出发,首先对氢原子基态能量进行估算,而后应用氢原子能级公式,得出氢原子不同受激态能量值,从而获得一幅氢原子能级的清晰图象,最后算出氢原子的电离能。 相似文献
8.
对爱因斯坦与玻尔围绕测不准关系争论的哲学思考 总被引:1,自引:0,他引:1
陈国庆 《东莞理工学院学报》2005,12(4):26-29
爱因斯坦和玻尔针对量子力学中的测不准关系:玻尔采取量子力学范式中的"悬搁""本体实在",仅从主体、客体相互作用的表观层次来理解;爱因斯坦则坚持从经典物理范式中的"本体实在"的角度去质疑.但玻尔也有极其深刻的本体论思想;爱因斯坦也突破过经典物理学范式而推动量子力学发展.争论正是在这种经典物理学范式与量子力学范式相互缠绕的语境中展开的,从中也反映出本体论思维方式既影响深远,又存在缺陷.因此,如何建构反映时代精神的本体论是一值得探讨的问题. 相似文献
9.
彭振生 《淮北煤炭师范学院学报(自然科学版)》1995,(2)
对“测不准关系”的解释,由于历史上不同学派有不同见解,目前学术界仍没有一个一致公认的定论,故一般教材回避这个问题。本文试图从测不准关系的引入着手,分层讨论。结果认为:“测不准关系是微观粒子具有波粒二象性的必然结果”。 相似文献
10.
11.
当我们利用测不准关系估计类氢原子基态能量时,面临着r的正则共轭动量是什么的问题.在这个问题的处理上,存在着含糊性,有必要予以澄清. 相似文献
12.
13.
判定二元关系传递性的几种方法 总被引:3,自引:0,他引:3
直接根据现有离散数学教材中的二元关系传递性定义来判定二元关系的传递性,有时比较困难,介绍了两个等价定义,给出了关系图法、关系矩阵法、关系复合运算、关系闭包等几种方法来判定关系的传递性,并分析了各种方法的优缺点,对正确掌握二元关系传递性的判定有一定作用。 相似文献
14.
从分析面向对象数据库中对象模型、数据依赖着手,提出了对象函数依赖的概念,在此基础上提出了以分解为基础的对象模式、规范化方法,并在分析对象模型、关系模型的基础上,介绍了用四元组的方式研究这两种模型的表述关系以及关系模型可以用对象模型完全描述的结论,据此,给出了关系模型与对象模型间的映射关系,通过简单实例,探讨了关系模型中嵌入对象机制的可行性 相似文献
15.
讨论了物理实验教学中引入不确定度的必要性及其评定方法,并在一个实例中分析了实验结果的不确定度表示方法。 相似文献
16.
17.
类的测试顺序对于面向对象的集成测试有着重要的作用.在基于对象关系图(ORD)的测试顺序生成方法上,改进了对象关系图,结合设计模式提出了对象模式关系图(OMRD),并在对象模式关系图的基础上提出了基于对象模式关系图的测试顺序生成方法.基于对象模式关系图的测试顺序生成方法能在一定程度上解决基于对象关系图的测试顺序生成方法所存在的不足. 相似文献
18.
在系统不确定矩阵的范数有一定限制的情况下,利用比较定理及矩阵范数与测度的有关性质,给出了一般不确定时滞系统及对称组合不确定时滞系统的稳定性条件.在对称组合系统的情形下,还给出了时滞相关型的稳定条件. 相似文献
19.
20.
用发生函数的办法考察了线性递推关系bi,j=αbi-1,j βbi,j-1和ci,j=αci-1,j βci,j-1 αβci-1,j-1的特殊情况所确定的矩阵B和C,得到了矩阵B,C的分解B=P[α](bo,oI ωE)PT[β],C=P[α]DPT[β]和相应行列式的值.发现B,C与Pascal矩阵P有着紧密的联系. 相似文献