首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
从陕西姬源油田污染严重的土壤中富集培养、筛选分离得到8株降解石油菌,向土壤中添加上述8株菌组成的混合菌剂,通过63 d盆栽试验,利用微生物菌剂与冰草联合作用修复石油污染土壤,测定土壤中降油率、微生物数量和脱氢酶活性;并采用气相-质谱联用仪(GC-MS)分析石油中正构烷烃组分的降解情况研究植物-微生物联合修复油污土壤。试验结果表明:植物与微生物菌剂联合作用修复能力大于单一植物修复能力,并且含油质量分数直接影响修复性能;经63 d植物与菌剂联合修复质量分数为3%含油土壤,降油率达81.48%,比单一植物降油高43.04%;土壤微生物数量、脱氢酶活性的增加有利于原油降油;微生物-植物联合作用对高碳数烷烃的降解作用大于低碳数烷烃的降解作用,15 d的降解率平均可达60%以上,加菌后正二十三烷和正三十三烷的降解率分别较对照组提高了34.7%和25.3%。  相似文献   

2.
模拟野外漫灌洗盐并控制洗盐次数得到不同含盐量的土壤,比较单纯生物刺激、生物刺激加生物强化处理对不同含盐量的石油污染土壤的修复效果。结果表明:无论是单纯的生物刺激,还是生物刺激加生物强化处理下,土壤含盐量均有一定程度的降低,可有效提高石油烃的降解率。当土壤含盐量为0.22%(质量分数)时,添加4%菌剂修复第3天时,石油烃降解率可达24.98%;当土壤含盐量为0.01%时,生物刺激加生物强化处理28 d后石油烃的降解率是单纯生物强化的1.1倍;低含盐量添加4%菌剂处理下土壤石油烃降解率是高含盐量加4%菌剂处理的1.22倍。各处理下土壤脱氢酶活性随着培养时间逐渐增强,pH则随着培养时间有所下降,土壤盐碱性得到改良;土壤环境得到改善,微生物的种类及数量增加。  相似文献   

3.
针对石油污染问题,选育高效石油降解菌,为石油污染生物修复提供菌种资源和技术支持。通过连续富集传代培养,从石油污染土壤样品中分离出高效石油降解菌XS-2。经过形态学、生理生化以及16S rRNA序列分析,鉴定XS-2为赤红球菌(Rhodococcus ruber)。该菌的最佳培养条件是培养温度30℃、初始培养pH值7.0、石油质量浓度5 g/L,7 d降解率可达65%。经气相色谱(GC)分析,该菌可有效降解碳14、15、16、17的正构烷烃。因此,赤红球菌XS-2在开发研制石油污染生物修复菌剂方面有较好的应用前景。  相似文献   

4.
添加混合菌剂对石油污染土壤的降解   总被引:3,自引:0,他引:3  
从甘肃华庆油田污染严重的土壤中富集培养、筛选分离得到A6,A5,D4,F1和F2共5种菌属的降解石油菌,在实验条件下向土壤中添加上述5种菌不同浓度的混合菌剂,并对土壤中的脱氢酶活性、土壤溶液电导率、氮磷的变化对石油污染土壤的降解率的影响进行研究.研究结果表明:当土壤中石油含量为50 g/kg时,加入高效降解菌的石油降解率比没有加菌剂的降解效率高,添加2%,4%和8%菌剂48 d的降解率分别为68.01%,80.42%和78.47%,均大于CK(没有任何组分)的降解率45.50%,4种处理中4%菌剂的修复效果最显著.添加的有机肥中氮和磷的含量是影响石油降解率的主要因素,只有加适量的有机肥如4%才能使降解效果最好.混合菌株降解石油表现出先降解高碳数正构烷烃为低碳数正构烷烃,高碳数正构烷烃中奇数碳向偶数碳正构烷烃演化的规律;原油中类异戊二烯烷烃在混合菌7d的作用过程中发生明显降解,菌株能较好地促使五环三萜类化合物立体构型中不稳定构型向稳定性构型转化的演化规律.  相似文献   

5.
通过盆栽试验,初步探究根际微生物和植物协同作用对石油污染土壤的生物修复效果的影响。选择根瘤菌、石油烃降解菌、根际促生菌并与豆科植物扁豆的不同组合为调控因子,通过盆栽试验,进行了土壤石油污染物生物降解的初步研究。结果表明:在修复过程中扁豆与根际微生物均能提高土壤石油降解率并存在一定的协同作用。处理前,石油土壤的污染水平为8.75%,经过56 d的修复试验,对照组的土壤石油污染降解率为27.08%;种植扁豆裸土组的土壤石油污染降解率为44.81%,比对照组提升了17.73%;添加微生物裸土组的土壤石油污染降解率最大为70.57%;种植扁豆并添加微生物组的土壤石油污染降解率为83.05%。种植植物对土壤石油污染修复有较好的作用,同时合理添加各种微生物,利用协同作用能明显提高修复的效果。  相似文献   

6.
以山东省东营市胜利油田附近被石油污染的土壤作为分离样品,连续富集筛选出以原油为唯一碳源、能源进行生长繁殖的石油高效降解菌株X_P和X_B.经菌落形态、生理生化反应,初步鉴定2株菌分属为芽孢杆菌属(Bacillus sp.)和假单胞菌属(Pseudomonas sp.);通过生物表面活性剂活性试验,分析了2株菌的油降解能力.结果表明:2株菌均具溶血和排油特性,溶血圈直径高达3.6 cm、排油圈直径高达4.9 cm,可以产生生物表面活性剂,并且溶血圈和排油圈直径与生物表面活性剂的产生呈正相关.室内培养箱实验测定,2株菌对石油的降解率分别为72.3%(X_P)和61.2%(X_B)(原油含量/土壤总量×100%=10%),在此过程中2株菌对石油降解的速度、能力有显著效果.室外堆制试验中,60 d处理后,锯末、小麦秸秆、菌剂及N、P营养物协同处理组降解效果明显,降解率高达54.0%-68.2%,说明外源添加物能提高微生物的降解能力.结论:筛选得到的菌株X_P和X_B是两株高效降解石油的菌株,在土壤中能很好地利用石油进行生长代谢,可应用于石油污染实际生物修复工程.  相似文献   

7.
16种EPA-PAHs复合污染土壤的菌群修复   总被引:3,自引:1,他引:2  
通过富集筛选获得一组PAHs降解混合菌群和3株降解单菌,利用变性梯度凝胶电泳(DGGE)技术分析混合菌群的组成,对16种多环芳烃(PAHs)复合污染土壤进行生物修复,同时考察混合菌群和单菌株在PAHs复合污染土壤中的生物修复效果。结果表明:混合菌群主要由3株已分离获得的降解单菌和5株未可分离培养的单菌组成;经过30 d的生物修复,混合菌群对土壤中总PAHs的降解率(54.17%)高于单一菌株(28.40%,31.95%,24.64%),并且对高相对分子质量PAHs的降解表现出了较大的优势,4环、5环、6环PAHs的降解率分别可达到71.26%、39.76%和42.86%;利用混合菌群来修复16种PAHs复合污染的土壤,可以避免一些未可分离培养的关键菌株的丢失,使PAHs的降解更加全面有效。  相似文献   

8.
针对油田所产生的含油污水,设计了砂滤-固定化菌剂活性炭深度处理装置,研究对污水中油和SS污染物的去除效果。室内实验结果表明,经过此过滤装置的含油污水,最终出水中油和SS的含量分别为3.25 mg·L~(-1)和26 mg·L~(-1)。石油降解菌剂对石油的降解率在10 d内可达35.6%,显示了此种菌剂在含油污水处理领域具有很好的应用前景。  相似文献   

9.
石油污染土壤植物根际微生态环境与降解效应   总被引:22,自引:0,他引:22  
利用大庆油田石油开采区的污染土壤作为供试土壤,选择紫花苜蓿和披碱草为供试植物,通过监测根系微生物活性、石油烃降解效率等指标,建立植物根际微生态环境生物和非生物因子之间的量化关系,揭示污染土壤石油烃降解效应和影响要素.研究结果表明,植物根系可改善污染土壤持水能力和微生物活性,与无根系土壤相比,提高含水率达10%. 植物根际微生物的数量高出1~2个数量级, FDA(荧光素双醋酸酯)活性高出0.29~0.36. 经过150 d的降解,植物根际油污土中石油烃的降解率比无根系土壤高 9.1%~15.5%. 污染土壤植物根际微生态环境对微生物活性具有诱导作用,有利于石油烃的降解和污染土层的生物修复.  相似文献   

10.
该研究以核桃青皮发酵产物配施生物炭为固定化载体,结合前期筛选的硫酸盐还原菌(SRB15-3-2),制备得到了核桃青皮固定化菌剂,用于重金属污染土壤修复。基于pH、含水率、总养分、有机质、种子发芽指数和重金属含量等指标,评估了核桃青皮的发酵效果。通过配施生物炭并接种SRB15-3-2得到了改良后的固定化菌剂,考察了核桃青皮固定化菌剂对土壤重金属形态转化、植物生长及重金属富集能力的影响。结果表明,核桃青皮固定化菌剂促进了青菜生长并提高了生物量,与对照组(CK)相比,施加固定化菌剂的Cu和Cd污染土壤中青菜的株高分别增加了12.62%和5.42%,地上部分干重分别增加了95.05%和47.93%;固定化菌剂对土壤重金属表现出明显的钝化作用,促进了Cu和Cd从可交换态向残渣态转化,从而降低了重金属的迁移性及生物毒性,且青菜地下部分Cu和Cd的含量相比CK组降低了92.92%和72.83%,地上部分含量降低了34.00%和3.30%。研究结果为重金属污染土壤修复和核桃青皮的资源化利用提供了科学依据和理论支撑。  相似文献   

11.
为对低温海域石油烃污染修复提供优良菌源,采用红外分光仪和气相色谱与质谱联用仪对北极耐冷石油降解菌BJ1、BJ9和BJ19的降解特性进行研究,结果显示:除BJ1-9外,其他混合菌群的降解率均大于单一菌株的降解率,盐度、pH、温度、初始油质量浓度、营养盐对石油降解率均有较大影响;BJ1、BJ9和BJ19以及混合菌群对柴油总烃的降解效率分别为55.25%、49.37%、50.76%和63.44%;BJ1、BJ9和BJ19以及混合菌群在单因素最好条件下对柴油芳香烃的降解效率分别为32.22%、19.87%、15.73%和7.33%;菌株在低温下优先降解短链烷烃,在7d内C18后的长链烷烃未被降解;BJ1、BJ9、BJ19和混合菌群对汽油和海燃油降解效果明显,而对原油和燃料油等降解效果较差.研究表明,该三株菌能够利用多种石油烃组分作为碳源生长并可降解多环芳烃,对碳源的利用具有广谱性.  相似文献   

12.
采用响应曲面法优化混合菌KW8-2修复石油污染土壤的条件。以初始原油质量分数、接种量、氮磷比和表面活性剂用量为自变量,修复60 d的原油降解率为因变量,采用Box-Behnken(BB)设计,研究各自变量及其交互作用对污染土壤生物修复的影响,得到二次多项式回归方程预测模型。结果表明:原油质量分数分别为10×10-3、30×10-3和50×10-3的污染土壤,最佳修复条件下的原油降解率分别为67.12%、63.39%和56.57%,远高于单因素试验的最高值(63.78%、60.36%和55.44%);试验数据可为混合菌KW8-2修复原油污染实际土壤提供技术支持。  相似文献   

13.
石油污染土壤修复过程中肥料的应用   总被引:1,自引:0,他引:1  
在利用微生物菌剂修复石油污染土壤的过程中,肥料的类型、用量和补加均能对土壤中石油降解、菌体数目产生影响。研究实验表明,NH4NO3:NH4H2PO4=5:1,肥料添加总量为污染土壤质量的0.75%,在修复到30d时补加肥料,能获得良好的降解效果。经过60d的花盆修复实验,石油降解率达到48.5%。  相似文献   

14.
利用微生物降解土壤中的石油污染物,具有良好的应用前景。实验模拟研究了营养物(N、P)、电子受体(H2O2)、含水量和表面活性剂(TW80、SDS)等多因素对复合菌剂修复石油污染土壤的影响。实验针对四个影响因素,设计了正交实验,得到实验结果表明,营养物、电子受体、水和活性剂对微生物修复石油污染土壤都具有较大影响,当添加C∶N∶P为400∶6∶1、H2O2为10 mg/g、水为30%和阴离子活性剂0.6 mg/g时,复合菌剂降解土壤中石油的效率可达到73.2%。  相似文献   

15.
植物-微生物联合修复石油污染土壤的实验室模拟   总被引:1,自引:0,他引:1  
对冰草、紫花苜蓿、冬小麦进行了为期63 d的实验室模拟,通过测定土壤脱氢酶活性、微生物数量以及土壤残油率的变化,分析了植物-微生物联合作用对不同质量分数土壤石油烃污染的修复效果,以期为后期的现场修复提供理论依据.结果表明:在石油烃质量分数为3%时,植物-微生物联合可使石油烃降解率达到84%~87%;3种植物的降油效果依次为紫花苜蓿冰草冬小麦,紫花苜蓿组最高石油降解率可达86.47%.在石油烃质量分数达到10%时,微生物的生长受到明显阻碍,土壤脱氢酶活性也大大降低,从而导致植物-微生物联合修复受阻,植物表现为生长缓慢,植物茎叶变小、微黄.因此,植物-微生物联合体系中,石油烃质量分数为3%时能促进微生物的繁殖,提高土壤中脱氢酶活性,促进植物和微生物对石油烃污染物的降解,加速油污土壤的修复作用.  相似文献   

16.
海洋石油烃降解菌群构建及其在降解过程中的动态分析   总被引:3,自引:0,他引:3  
有针对性地选择了实验室从油污染的样品中富集筛选出来的6株细菌构建出一个石油烃降解菌群,采用PCR-DGGE结合平板计数监测法研究了该菌群在石油烃降解过程中的菌群结构变化.结果表明,能产生生物乳化剂的不动杆菌PN3-2在混合菌群中是稳定优势菌,专一性利用烷烃的食烷菌B-5是菌群拥有持久高效降解能力不可缺少的菌株,而降解后期的优势菌铜绿假单胞菌可能对烷烃代谢产物的清除有重要作用.本实验为人工构建有机污染物降解菌群提供了实践经验,并为大规模的生物修复实践奠定了基础.  相似文献   

17.
海洋石油烃降解菌群构建及其在降解过程中的动态分析   总被引:7,自引:0,他引:7  
有针对性地选择了实验室从油污染的样品中富集筛选出来的6株细菌构建出一个石油烃降解菌群,采用PCR-DGGE结合平板计数监测法研究了该菌群在石油烃降解过程中的菌群结构变化.结果表明,能产生生物乳化剂的不动杆菌PN3-2在混合菌群中是稳定优势菌,专一性利用烷烃的食烷菌B-5是菌群拥有持久高效降解能力不可缺少的菌株,而降解后期的优势菌铜绿假单胞菌可能对烷烃代谢产物的清除有重要作用.本实验为人工构建有机污染物降解菌群提供了实践经验,并为大规模的生物修复实践奠定了基础.  相似文献   

18.
通过向石油污染土样中投加微球菌,对石油污染黄土生物修复的影响因素(污染强度、调理剂、含水率、投菌量等)进行室内试验研究.试验结果表明:污染强度为6g/kg、添加麦皮、含水率为20%、投菌量为40mL/kg时,污染土样中石油的降解率最大.  相似文献   

19.
在实验室条件下模拟了石油烃污染土壤的生物修复试验,发现突变菌PS 2对土壤中的石油烃污染物降解速度明显高于其野生菌株SY-02.对土壤中的土著微生物、含水量、接种量、分散剂等影响微生物降解速度的因素进行研究,结果表明:土壤中的土著微生物对石油烃的降解有明显的促进作用;当土壤含水量在20%~25%之间时,石油烃的降解效果最好,其最高降解率达到93%;当接种量在150~250mL之间时,突变菌PS 2对石油烃的降解效果最好,其中接种量为200mL时,其降解率最高为93.4%.土壤分散剂可以明显地提高石油烃的生物降解速度,其中稻壳作为分散剂降解效果最好,其最终降解效率达到93.1%.该研究结果可以为石油烃污染环境的高效生物修复提供参考依据和理论基础.  相似文献   

20.
为探究菌株协同降解石油的能力与机制,获得更高效的石油降解菌群,从长期被石油污染的油泥样中筛选获得十株具备石油降解能力的细菌命名为X-SY 1~10,并构建了一个更优的降解石油降解菌群。研究了各菌株的石油降解能力,生产表面活性剂的能力并鉴定了各菌株种属以及通过气相色谱-质谱联用GC-MS法分析了菌株降解前后的石油组分。结果表明,菌株X-SY 1的石油降解能力最高,达到了49.9%±1.9%,且能够高效降解短碳链烃组分,鉴定为枯草芽孢杆菌。菌株X-SY 6的降解谱最广,属于贝莱斯芽孢杆菌。菌株X-SY 4产表面活性剂能力最强,鉴定为解淀粉芽孢杆菌。根据以上结果搭配菌群并测定菌群的石油降解率,得X-SY 1、X-SY 4、X-SY 6组成的菌群降解率最高,达到了58.6%±2.1%。说明合理搭配产表面活性剂菌株与降解谱互补的菌株这一策略能有效提升总石油降解率,为石油降解菌群搭配提供新思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号