首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vaccinations with amyloid-beta peptide (A beta) can dramatically reduce amyloid deposition in a transgenic mouse model of Alzheimer's disease. To determine if the vaccinations had deleterious or beneficial functional consequences, we tested eight months of A beta vaccination in a different transgenic model for Alzheimer's disease in which mice develop learning deficits as amyloid accumulates. Here we show that vaccination with A beta protects transgenic mice from the learning and age-related memory deficits that normally occur in this mouse model for Alzheimer's disease. During testing for potential deleterious effects of the vaccine, all mice performed superbly on the radial-arm water-maze test of working memory. Later, at an age when untreated transgenic mice show memory deficits, the A beta-vaccinated transgenic mice showed cognitive performance superior to that of the control transgenic mice and, ultimately, performed as well as nontransgenic mice. The A beta-vaccinated mice also had a partial reduction in amyloid burden at the end of the study. This therapeutic approach may thus prevent and, possibly, treat Alzheimer's dementia.  相似文献   

2.
Much evidence indicates that abnormal processing and extracellular deposition of amyloid-beta peptide (A beta), a proteolytic derivative of the beta-amyloid precursor protein (betaAPP), is central to the pathogenesis of Alzheimer's disease (reviewed in ref. 1). In the PDAPP transgenic mouse model of Alzheimer's disease, immunization with A beta causes a marked reduction in burden of the brain amyloid. Evidence that A beta immunization also reduces cognitive dysfunction in murine models of Alzheimer's disease would support the hypothesis that abnormal A beta processing is essential to the pathogenesis of Alzheimer's disease, and would encourage the development of other strategies directed at the 'amyloid cascade'. Here we show that A beta immunization reduces both deposition of cerebral fibrillar A beta and cognitive dysfunction in the TgCRND8 murine model of Alzheimer's disease without, however, altering total levels of A beta in the brain. This implies that either a approximately 50% reduction in dense-cored A beta plaques is sufficient to affect cognition, or that vaccination may modulate the activity/abundance of a small subpopulation of especially toxic A beta species.  相似文献   

3.
S Kawabata  G A Higgins  J W Gordon 《Nature》1991,354(6353):476-478
Alzheimer's disease (AD) affects more than 30% of people over 80 years of age. The aetiology and pathogenesis of this progressive dementia is poorly understood, but symptomatic disease is associated histopathologically with amyloid plaques, neurofibrillary tangles and neuronal loss primarily in the temporal lobe and neocortex of the brain. The core of the extracellular plaque is a derivative of the amyloid precursor protein (APP), referred to as beta/A4, and contains the amino-acid residues 29-42 that are normally embedded in the membrane-spanning region of the precursor. The cellular source of APP and the relationship of its deposition to the neuropathology of AD is unknown. To investigate the relationship between APP overexpression and amyloidogenesis, we have developed a vector to drive expression specifically in neurons of a C-terminal fragment of APP that contains the beta/A4 region, and have used a transgenic mouse system to insert and express this construct. We report here that overexpression of this APP transgene in neurons is sufficient to produce extracellular dense-core amyloid plaques, neurofibrillary tangles and neuronal degeneration similar to that in the AD brain.  相似文献   

4.
Reversing EphB2 depletion rescues cognitive functions in Alzheimer model   总被引:1,自引:0,他引:1  
Cissé M  Halabisky B  Harris J  Devidze N  Dubal DB  Sun B  Orr A  Lotz G  Kim DH  Hamto P  Ho K  Yu GQ  Mucke L 《Nature》2011,469(7328):47-52
Amyloid-β oligomers may cause cognitive deficits in Alzheimer's disease by impairing neuronal NMDA-type glutamate receptors, whose function is regulated by the receptor tyrosine kinase EphB2. Here we show that amyloid-β oligomers bind to the fibronectin repeats domain of EphB2 and trigger EphB2 degradation in the proteasome. To determine the pathogenic importance of EphB2 depletions in Alzheimer's disease and related models, we used lentiviral constructs to reduce or increase neuronal expression of EphB2 in memory centres of the mouse brain. In nontransgenic mice, knockdown of EphB2 mediated by short hairpin RNA reduced NMDA receptor currents and impaired long-term potentiation in the dentate gyrus, which are important for memory formation. Increasing EphB2 expression in the dentate gyrus of human amyloid precursor protein transgenic mice reversed deficits in NMDA receptor-dependent long-term potentiation and memory impairments. Thus, depletion of EphB2 is critical in amyloid-β-induced neuronal dysfunction. Increasing EphB2 levels or function could be beneficial in Alzheimer's disease.  相似文献   

5.
Neurodegenerative disease: amyloid pores from pathogenic mutations   总被引:1,自引:0,他引:1  
Alzheimer's and Parkinson's diseases are associated with the formation in the brain of amyloid fibrils from beta-amyloid and alpha-synuclein proteins, respectively. It is likely that oligomeric fibrillization intermediates (protofibrils), rather than the fibrils themselves, are pathogenic, but the mechanism by which they cause neuronal death remains a mystery. We show here that mutant amyloid proteins associated with familial Alzheimer's and Parkinson's diseases form morphologically indistinguishable annular protofibrils that resemble a class of pore-forming bacterial toxins, suggesting that inappropriate membrane permeabilization might be the cause of cell dysfunction and even cell death in amyloid diseases.  相似文献   

6.
Neurofibromatosis type I (NF1) is one of the most common single-gene disorders that causes learning deficits in humans. Mice carrying a heterozygous null mutation of the Nfl gene (Nfl(+/-) show important features of the learning deficits associated with NF1 (ref. 2). Although neurofibromin has several known properties and functions, including Ras GTPase-activating protein activity, adenylyl cyclase modulation and microtubule binding, it is unclear which of these are essential for learning in mice and humans. Here we show that the learning deficits of Nf1(+/-) mice can be rescued by genetic and pharmacological manipulations that decrease Ras function. We also show that the Nf1(+/-) mice have increased GABA (gamma-amino butyric acid)-mediated inhibition and specific deficits in long-term potentiation, both of which can be reversed by decreasing Ras function. Our results indicate that the learning deficits associated with NF1 may be caused by excessive Ras activity, which leads to impairments in long-term potentiation caused by increased GABA-mediated inhibition. Our findings have implications for the development of treatments for learning deficits associated with NF1.  相似文献   

7.
A specific amyloid-beta protein assembly in the brain impairs memory   总被引:4,自引:0,他引:4  
Lesné S  Koh MT  Kotilinek L  Kayed R  Glabe CG  Yang A  Gallagher M  Ashe KH 《Nature》2006,440(7082):352-357
Memory function often declines with age, and is believed to deteriorate initially because of changes in synaptic function rather than loss of neurons. Some individuals then go on to develop Alzheimer's disease with neurodegeneration. Here we use Tg2576 mice, which express a human amyloid-beta precursor protein (APP) variant linked to Alzheimer's disease, to investigate the cause of memory decline in the absence of neurodegeneration or amyloid-beta protein amyloidosis. Young Tg2576 mice (< 6 months old) have normal memory and lack neuropathology, middle-aged mice (6-14 months old) develop memory deficits without neuronal loss, and old mice (> 14 months old) form abundant neuritic plaques containing amyloid-beta (refs 3-6). We found that memory deficits in middle-aged Tg2576 mice are caused by the extracellular accumulation of a 56-kDa soluble amyloid-beta assembly, which we term Abeta*56 (Abeta star 56). Abeta*56 purified from the brains of impaired Tg2576 mice disrupts memory when administered to young rats. We propose that Abeta*56 impairs memory independently of plaques or neuronal loss, and may contribute to cognitive deficits associated with Alzheimer's disease.  相似文献   

8.
Genetic enhancement of learning and memory in mice.   总被引:118,自引:0,他引:118  
Hebb's rule (1949) states that learning and memory are based on modifications of synaptic strength among neurons that are simultaneously active. This implies that enhanced synaptic coincidence detection would lead to better learning and memory. If the NMDA (N-methyl-D-aspartate) receptor, a synaptic coincidence detector, acts as a graded switch for memory formation, enhanced signal detection by NMDA receptors should enhance learning and memory. Here we show that overexpression of NMDA receptor 2B (NR2B) in the forebrains of transgenic mice leads to enhanced activation of NMDA receptors, facilitating synaptic potentiation in response to stimulation at 10-100 Hz. These mice exhibit superior ability in learning and memory in various behavioural tasks, showing that NR2B is critical in gating the age-dependent threshold for plasticity and memory formation. NMDA-receptor-dependent modifications of synaptic efficacy, therefore, represent a unifying mechanism for associative learning and memory. Our results suggest that genetic enhancement of mental and cognitive attributes such as intelligence and memory in mammals is feasible.  相似文献   

9.
Protein phosphatase 1 is a molecular constraint on learning and memory   总被引:17,自引:0,他引:17  
Genoux D  Haditsch U  Knobloch M  Michalon A  Storm D  Mansuy IM 《Nature》2002,418(6901):970-975
Repetition in learning is a prerequisite for the formation of accurate and long-lasting memory. Practice is most effective when widely distributed over time, rather than when closely spaced or massed. But even after efficient learning, most memories dissipate with time unless frequently used. The molecular mechanisms of these time-dependent constraints on learning and memory are unknown. Here we show that protein phosphatase 1 (PP1) determines the efficacy of learning and memory by limiting acquisition and favouring memory decline. When PP1 is genetically inhibited during learning, short intervals between training episodes are sufficient for optimal performance. The enhanced learning correlates with increased phosphorylation of cyclic AMP-dependent response element binding (CREB) protein, of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and of the GluR1 subunit of the AMPA receptor; it also correlates with CREB-dependent gene expression that, in control mice, occurs only with widely distributed training. Inhibition of PP1 prolongs memory when induced after learning, suggesting that PP1 also promotes forgetting. This property may account for ageing-related cognitive decay, as old mutant animals had preserved memory. Our findings emphasize the physiological importance of PP1 as a suppressor of learning and memory, and as a potential mediator of cognitive decline during ageing.  相似文献   

10.
Progressive cerebral deposition of the 39-43-amino-acid amyloid beta-protein (A beta) is an invariant feature of Alzheimer's disease which precedes symptoms of dementia by years or decades. The only specific molecular defects that cause Alzheimer's disease which have been identified so far are missense mutations in the gene encoding the beta-amyloid precursor protein (beta-APP) in certain families with an autosomal dominant form of the disease (familial Alzheimer's disease, or FAD). These mutations are located within or immediately flanking the A beta region of beta-APP, but the mechanism by which they cause the pathological phenotype of early and accelerated A beta deposition is unknown. Here we report that cultured cells which express a beta-APP complementary DNA bearing a double mutation (Lys to Asn at residue 595 plus Met to Leu at position 596) found in a Swedish FAD family produce approximately 6-8-fold more A beta than cells expressing normal beta-APP. The Met 596 to Leu mutation is principally responsible for the increase. These data establish a direct link between a FAD genotype and the clinicopathological phenotype. Further, they confirm the relevance of the continuous A beta production by cultured cells for elucidating the fundamental mechanism of Alzheimer's disease.  相似文献   

11.
Alzheimer‘s disease is a progressive neurodegenerative disorder characterized by the presence of senile plaques primarily composed of amyloid β in brain. Abnor-mal secretion and aggregation of amyloid β are the key events in pathogenesis of Alzheimer‘s disease. Reduction of amyloid β production and inhibition of amyloid β aggregation to form senile plaques are hopeful strategies for the treatment and prevention of Alzheimer‘s disease. In the present study, the silver and immunohistochemical staining methods were applied to discover senile plaques in the hippocampus of Alzheimer‘s disease patients, and then images were processed and three-dimensionally reconstructed by Matlab and AVS software. The structure characteristics of senile plaques were measured through correlation function calculation and fractal dimension by a computer-aided method. Diffuse plaque had no amyloid center, but classic plaque presented compact central core structure; two types of plaques were both of porous structure, but the sizes of their pores were significantly different. Furthermore, there was difference in fractal dimension value between the diffuse plaque and classic plaque in the two staining methods. The comparison of structure characteristics between two types of plaques indicated that they developed independently. Establishment of the methods for reconstructing the three-dimensional structure of senile plaque and analyzing their structure characteristics is helpful for further study on the aggregation mechanism of senile plaque.  相似文献   

12.
A specific memory is thought to be encoded by a sparse population of neurons. These neurons can be tagged during learning for subsequent identification and manipulation. Moreover, their ablation or inactivation results in reduced memory expression, suggesting their necessity in mnemonic processes. However, the question of sufficiency remains: it is unclear whether it is possible to elicit the behavioural output of a specific memory by directly activating a population of neurons that was active during learning. Here we show in mice that optogenetic reactivation of hippocampal neurons activated during fear conditioning is sufficient to induce freezing behaviour. We labelled a population of hippocampal dentate gyrus neurons activated during fear learning with channelrhodopsin-2 (ChR2) and later optically reactivated these neurons in a different context. The mice showed increased freezing only upon light stimulation, indicating light-induced fear memory recall. This freezing was not detected in non-fear-conditioned mice expressing ChR2 in a similar proportion of cells, nor in fear-conditioned mice with cells labelled by enhanced yellow fluorescent protein instead of ChR2. Finally, activation of cells labelled in a context not associated with fear did not evoke freezing in mice that were previously fear conditioned in a different context, suggesting that light-induced fear memory recall is context specific. Together, our findings indicate that activating a sparse but specific ensemble of hippocampal neurons that contribute to a memory engram is sufficient for the recall of that memory. Moreover, our experimental approach offers a general method of mapping cellular populations bearing memory engrams.  相似文献   

13.
In the central nervous system, ageing results in a precipitous decline in adult neural stem/progenitor cells and neurogenesis, with concomitant impairments in cognitive functions. Interestingly, such impairments can be ameliorated through systemic perturbations such as exercise. Here, using heterochronic parabiosis we show that blood-borne factors present in the systemic milieu can inhibit or promote adult neurogenesis in an age-dependent fashion in mice. Accordingly, exposing a young mouse to an old systemic environment or to plasma from old mice decreased synaptic plasticity, and impaired contextual fear conditioning and spatial learning and memory. We identify chemokines--including CCL11 (also known as eotaxin)--the plasma levels of which correlate with reduced neurogenesis in heterochronic parabionts and aged mice, and the levels of which are increased in the plasma and cerebrospinal fluid of healthy ageing humans. Lastly, increasing peripheral CCL11 chemokine levels in vivo in young mice decreased adult neurogenesis and impaired learning and memory. Together our data indicate that the decline in neurogenesis and cognitive impairments observed during ageing can be in part attributed to changes in blood-borne factors.  相似文献   

14.
C Haass  E H Koo  A Mellon  A Y Hung  D J Selkoe 《Nature》1992,357(6378):500-503
Progressive cerebral deposition of the amyloid beta-peptide is an early and invariant feature of Alzheimer's disease. The beta-peptide is released by proteolytic cleavages from the beta-amyloid precursor protein (beta APP), a membrane-spanning glycoprotein expressed in most mammalian cells. Normal secretion of beta APP involves a cleavage in the beta-peptide region, releasing the soluble extramembranous portion and retaining a 10K C-terminal fragment in the membrane. Because this secretory pathway precludes beta-amyloid formation, we searched for an alternative proteolytic processing pathway that can generate beta-peptide-bearing fragments from full-length beta APP. Incubation of living human endothelial cells with a beta APP antibody revealed reinternalization of mature beta APP from the cell surface and its targeting to endosomes/lysosomes. After cell-surface biotinylation, full-length biotinylated beta APP was recovered inside the cells. Purification of lysosomes directly demonstrated the presence of mature beta APP and an extensive array of beta-peptide-containing proteolytic products. Our results define a second processing pathway for beta APP and suggest that it may be responsible for generating amyloid-bearing fragments in Alzheimer's disease.  相似文献   

15.
Nicastrin, a transmembrane glycoprotein, forms high molecular weight complexes with presenilin 1 and presenilin 2. Suppression of nicastrin expression in Caenorhabditis elegans embryos induces a subset of notch/glp-1 phenotypes similar to those induced by simultaneous null mutations in both presenilin homologues of C. elegans (sel-12 and hop-1). Nicastrin also binds carboxy-terminal derivatives of beta-amyloid precursor protein (betaAPP), and modulates the production of the amyloid beta-peptide (A beta) from these derivatives. Missense mutations in a conserved hydrophilic domain of nicastrin increase A beta42 and A beta40 peptide secretion. Deletions in this domain inhibit A beta production. Nicastrin and presenilins are therefore likely to be functional components of a multimeric complex necessary for the intramembranous proteolysis of proteins such as Notch/GLP-1 and betaAPP.  相似文献   

16.
The clinical manifestations of AIDS (acquired immune deficiency syndrome) often include neuropsychiatric and neurological deficits, including early memory loss and progressive dementia. HIV (human immunodeficiency virus), the aetiological agent of AIDS, is probably carried by infected macrophages in the central nervous system. The virus enters cells by binding its envelope glycoprotein gp120 to the CD4 antigen present on brain and immune cells. From the data reported in this paper, we now suggest that the neuronal deficits associated with HIV may not be entirely a result of infectivity, but that gp120 shed from HIV could directly produce the neuropathology as a result of its interference with endogenous neurotrophic substances. It is known that an analogue of a sequence contained in vasoactive intestinal peptide (VIP) occurs in all known sequenced gp120 isolates and that VIP is important for neuronal survival in cell culture. Here we show that purified gp120 from two diverse HIV isolates and a recombinant gp120 from a third isolate were all potent in specifically producing significant neuronal cell death in dissociated hippocampal cultures derived from fetal mice, and that this could be reduced by monoclonal antibodies against the murine CD4 antigen and completely antagonized by VIP.  相似文献   

17.
GSK-3alpha regulates production of Alzheimer's disease amyloid-beta peptides   总被引:33,自引:0,他引:33  
Phiel CJ  Wilson CA  Lee VM  Klein PS 《Nature》2003,423(6938):435-439
Alzheimer's disease is associated with increased production and aggregation of amyloid-beta (Abeta) peptides. Abeta peptides are derived from the amyloid precursor protein (APP) by sequential proteolysis, catalysed by the aspartyl protease BACE, followed by presenilin-dependent gamma-secretase cleavage. Presenilin interacts with nicastrin, APH-1 and PEN-2 (ref. 6), all of which are required for gamma-secretase function. Presenilins also interact with alpha-catenin, beta-catenin and glycogen synthase kinase-3beta (GSK-3beta), but a functional role for these proteins in gamma-secretase activity has not been established. Here we show that therapeutic concentrations of lithium, a GSK-3 inhibitor, block the production of Abeta peptides by interfering with APP cleavage at the gamma-secretase step, but do not inhibit Notch processing. Importantly, lithium also blocks the accumulation of Abeta peptides in the brains of mice that overproduce APP. The target of lithium in this setting is GSK-3alpha, which is required for maximal processing of APP. Since GSK-3 also phosphorylates tau protein, the principal component of neurofibrillary tangles, inhibition of GSK-3alpha offers a new approach to reduce the formation of both amyloid plaques and neurofibrillary tangles, two pathological hallmarks of Alzheimer's disease.  相似文献   

18.
摘要:阿尔茨海默症( Alzheimer’ s disease,AD) 是一种神经退行性疾病,影响着全球 4 000 多万人的健康,预计在未来的几十年将呈指数级增长。 至今为止,该病还没有很好的治疗方法,也缺乏系统完整的病理及生理学研究,因此建立良好的动物模型是研究和治疗 AD 最有价值的科学工具。 本文总结了 4 种基因修饰的 AD 模型,讨论不同模型的表型特征、病理变化以及在科学研究中的应用。  相似文献   

19.
Amyloid beta-peptide is produced by cultured cells during normal metabolism.   总被引:61,自引:0,他引:61  
Alzheimer's disease is characterized by the extracellular deposition in the brain and its blood vessels of insoluble aggregates of the amyloid beta-peptide (A beta), a fragment, of about 40 amino acids in length, of the integral membrane protein beta-amyloid precursor protein (beta-APP). The mechanism of extracellular accumulation of A beta in brain is unknown and no simple in vitro or in vivo model systems that produce extracellular A beta have been described. We report here the unexpected identification of the 4K (M(r) 4,000) A beta and a truncated form of A beta (approximately 3K) in media from cultures of primary cells and untransfected and beta-APP-transfected cell lines grown under normal conditions. These peptides were immunoprecipitated readily from culture medium by A beta-specific antibodies and their identities confirmed by sequencing. The concept that pathological processes are responsible for the production of A beta must not be reassessed in light of the observation that A beta is produced in soluble form in vitro and in vivo during normal cellular metabolism. Further, these findings provide the basis for using simple cell culture systems to identify drugs that block the formation or release of A beta, the primary protein constituent of the senile plaques of Alzheimer's disease.  相似文献   

20.
Y Miyashita 《Nature》1988,335(6193):817-820
In human long-term memory, ideas and concepts become associated in the learning process. No neuronal correlate for this cognitive function has so far been described, except that memory traces are thought to be localized in the cerebral cortex; the temporal lobe has been assigned as the site for visual experience because electric stimulation of this area results in imagery recall and lesions produce deficits in visual recognition of objects. We previously reported that in the anterior ventral temporal cortex of monkeys, individual neurons have a sustained activity that is highly selective for a few of the 100 coloured fractal patterns used in a visual working-memory task. Here I report the development of this selectivity through repeated trials involving the working memory. The few patterns for which a neuron was conjointly selective were frequently related to each other through stimulus-stimulus association imposed during training. The results indicate that the selectivity acquired by these cells represents a neuronal correlate of the associative long-term memory of pictures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号