首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
为解决污水生化处理过程中的水质参数BOD5(5天生化需氧量)难以在线监测的难题,在充分考虑污水处理过程非线性和多变量耦合的基础上,结合Jolliffe参数和数据选择算法提出了鲁棒最近相关性算法,并将其与RPLS(迭代偏最小二乘)和线性偏差补偿等算法相结合,对JIT(Just-in-Time)在线学习算法进行了改进,最后...  相似文献   

2.
基于改进的GA-LSSVM的软测量建模方法   总被引:1,自引:0,他引:1  
针对工业过程中某些重要过程变量难以实现在线测量的问题,提出了一种改进的最小二乘支持向量机(IGA-LSSVM)的软测量建模方法.该方法采用核独立分量分析(KICA)对高维数据进行特征提取,利用改进的最小二乘支持向量机进行建模.该方法既利用了最小二乘支持向量机求解速度快的特点,又利用了自适应遗传算法强大的全局搜索能力,增强了模型的自适应性.用该方法建立柴油凝点的软测量模型,结果表明,基于IGA-LSSVM方法建立的软测量模型具有较高的预测精度和泛化能力.  相似文献   

3.
辅助变量的选取是软测量建模中重要的一步;但由于待选变量数目多、与主导变量非线性相关、信息冗余大等因素导致辅助变量的选择不够合理。在信息熵和互信息理论基础上,改进IBF和MIFS变量筛选算法,综合考虑了辅助变量和主导变量之间的最大相关性,以及辅助变量之间的最小冗余性。作为算例使用改进后的算法,筛选了某燃煤机组运行历史数据,建立了省煤器出口NOx浓度的GA-BP软测量模型。实验证明这种基于互信息的变量筛选方法可以有效提高模型的输出精度和泛化能力。  相似文献   

4.
基于PCA和LS-SVM的软测量建模与应用   总被引:4,自引:0,他引:4  
针对工业过程中某些重要过程变量难以实现实时在线检测和高维数据处理的问题,提出了将主元分析与最小二乘支持向量机相结合的软测量建模方法,并利用该方法建立了工业阿维菌素发酵过程中的菌丝浓度软测量模型.主元分析方法的引入,有效地提高了最小二乘支持向量机软测量模型的精度和泛化能力.应用结果表明,该方法与基于径向基函数神经网络软测量模型相比具有有效性和优越性.  相似文献   

5.
在标准最小二乘支持向量机(least square supportvector machine,LS-SVM)的基础上,利用改进的粒子群算法(i mproved particle swarmopti mization,IPSO)来优化LS-SVM模型参数,提出了基于IPSO-LS-SVM的软测量建模方法,建立了作物叶水势软测量模型.仿真结果表明,该方法比基本LS-SVM和PSO-LS-SVM模型具有更高的精度,能够很好地预测作物叶水势信息.  相似文献   

6.
采取基于核函数偏最小二乘法的高斯过程回归模型(KPLS-GPR),对复杂的造纸废水处理过程中出水化学需氧量(COD)和出水悬浮固形物(SS)质量浓度进行预测.首先,采用KPLS的潜变量作为预测模型的输入变量,以降低数据维度,优化数据结构;其次,建立潜变量与输出变量的GPR回归模型.基于某工厂造纸废水数据进行仿真试验,引入人工神经网络(ANN)、基于偏最小二乘潜变量的预测模型(PLS-ANN)及基于核函数偏最小二乘潜变量的预测模型(KPLS-ANN)作为对比.试验结果表明:KPLS潜变量对预测模型有明显的优化效果,在这些模型中KPLS-GPR预测精度最高;对于出水COD和SS质量浓度的预测,KPLS-GPR的决定系数分别为0.575和0.610,相比于常规预测模型,决定系数可分别提升36.90%和43.87%.  相似文献   

7.
飞灰含碳量运行人员判断锅炉运行好坏和降低煤耗的一项重要指标,是指导评价锅炉燃烧优劣的依据。精确和实时地监测飞灰含碳量有利于提高锅炉燃烧控制水平,降低发电成本,提高机组运行的经济性,本论文在参阅了大量文献后,对课题的研究现状进行了分析和比较,设计了一种基于混合建模的方法构建飞灰含碳量的软测量模型。  相似文献   

8.
基于模糊c均值聚类的多模型软测量建模   总被引:25,自引:2,他引:25  
根据几个模型相加可提高模型的预测精度及鲁棒性的思想,提出了一种非线性软测量建模的新方法。即先用模糊c均值聚类将训练集分成具有不同聚类中心的子集,每一子集用RBF网络或部分最小二乘法进行训练得出子模型,再用模糊聚类后产生的隶属度将各子模型的输出加权求和得到最后结果,此算法通过一个复杂非线性函数的仿真建模和一个分馏塔柴油倾点软测量建模的工业实例研究,结果表明比其它算法具有更好的泛化结果和预报精度,具有  相似文献   

9.
针对目前赖氨酸生产过程中发酵产物品质参量难以实时测量,现有软测量模型精度不高、鲁棒性差的问题,提出了一种基于ISCA-LSSVR的赖氨酸发酵过程多模型软测量方法.首先,利用改进的满意聚类算法(ISCA)将样本数据集划分为c个子集;其次,利用最小二乘支持向量回归机(LSSVR)对每个子集分别构建子模型;随后,利用粒子群优化算法和退火算法协同优化模型参数;然后,加权融合各子模型输出得到最终系统输出;最终,设计了由上位机数据处理模块和下位机数据采集模块共同组成的赖氨酸发酵过程关键变量的智能实时监控系统.试验仿真结果表明,相较于传统单一LSSVR预测模型,ISCA-LSSVR模型对产物、基质、菌体质量浓度的预测精度分别提高了5.01%、3.62%和6.78%,模型泛化能力得到了较大提高.  相似文献   

10.
基于混合PLS-SVM方法的双酚A软测量建模   总被引:1,自引:1,他引:1  
在对复杂生产过程的软测量建模中,为了有效地处理其生产过程的非线性、多输入和数据相关性等复杂特性,提高模型的推广能力和精度,提出了一种兼备偏最小二乘和支持向量机优点的混合偏最小二乘-支持向量机方法.在对双酚A结晶塔工艺分析的基础上,将该方法应用于双酚A结晶塔软测量建模.应用结果表明,该方法在模型精度、推广能力等方面都明显优于一些传统软测量建模方法.  相似文献   

11.
综合同伦方法与Levenberg-Marquardt(LM)优化方法,提出了一种新型非线性同伦LM神经网络学习算法以改善现有神经网络学习算法的学习效率,分析了不同类型的过渡函数对神经网络泛化性能的影响.该算法具有稳定性强、收敛性能好的特点.结合工业过程实际要求,将提出的改进算法用于丙烯腈收率神经网络软测量建模并与几种常见建模方法比较,结果表明:基于改进算法的软测量模型具有更高的测量精度和更好的泛化性能,满足现场测量要求.  相似文献   

12.
基于混沌最小二乘支持向量机的软测量建模   总被引:1,自引:0,他引:1  
提出一种改进算法,用来解决现有最小二乘支持向量机方法在处理大规模样本软测量建模问题时出现的模型结构复杂、失去支持向量稀疏性且正规化参数和核参数难以确定等问题.对样本集进行预处理,通过计算样本间欧氏距离进行样本相似程度分析,去除样本集中1/3的样本以简化支持向量机模型结构并提高计算速度.定义了一种混沌映射构成混沌系统并分析了其遍历性.应用改进的混沌优化算法优化最小二乘支持向量机模型参数以提高模型的拟合精度和泛化能力.将改进算法用于丙烯腈收率软测量建模中,仿真实验结果表明:模型精度较高,泛化性能好,满足现场测量要求.  相似文献   

13.
及时、准确地测定化工过程变量,对确保生产过程稳定、有效控制产品质量具有重要意义。RBF-LVLS是在分析RBF-PLS的基础上提出的新方法,它保留了RBF-PLS的优点,采用非线性的神经网络结构,又用数学方法直接求解,免去了ANN冗长的训练过程和其他诸多欠缺,同时,它所集成的LVLS方法将PLS的多个目标函数整合为因变量成分拟合误差一个,以此循环迭代求解自变量和因变量的成分及它们间的回归系数,从而使建立的模型既具有很高的预报精度和良好的稳定性,又有简洁的解析形式,便于优化等进一步的计算和处理。RBF-LVLS方法成功应用于甲醇合成反应器的软测量建模。  相似文献   

14.
无线传感器网络中可信的节点选择算法   总被引:1,自引:0,他引:1  
以目标跟踪为背景,讨论无线传感器网络中如何利用节点的协作实现可信协作目标跟踪.首先利用传感器节点的检测概率建立节点的可信模型.然后,基于这个模型,综合考虑节点的信息贡献量和通信开销,建立了一个节点选择的最优化模型.最后,通过仿真来验证算法的有效性.  相似文献   

15.
基于微粒群优化算法和支持向量机的软测量建模   总被引:1,自引:0,他引:1  
在分析基本微粒群优化算法(PSO)和支持向量机(SVM)原理的基础上,采用带有末位淘汰机制的微粒群优化算法优化支持向量机的参数,建立了延迟焦化装置粗汽油干点软测量的微粒群支持向量机模型.该方法利用支持向量机结构风险最小化原则和PSO算法快速全局优化的特点,用于软测量建模.仿真实验表明:所建模型的泛化性能较好,模型具有较高的精度.  相似文献   

16.
提出了一种改进的粒子群算法,很好地解决了基本粒子群算法中易陷入局部最优的缺点。通过比较和分析几个标准测试函数的计算结果,改进的粒子群算法的优良性得到充分的证明。改进的粒子群算法被用于优化神经网络的结构和参数,结果表明:不但网络的结构得到控制,而且泛化性能有了较大的提高。同时,算法在优化神经网络上的有效性也在4-CBA含量的软测量建模中得到了很好的证实。  相似文献   

17.
针对最小二乘支持向量机最佳算法参数难以确定的缺陷,提出了基于文化差分进化算法的最小二乘支持向量机(Cultural Differential evolution Algorithm Least Square Support Vector Machine,CDE-LSSVM)。该算法通过新型的文化差分进化算法优化确定最小二乘支持向量机核宽度参数和惩罚系数,建立具有良好预测性能的模型。同时,针对药物定量构效关系(Quantitative Structure-Activity Relationships,QSAR)模型具有高度非线性、变量之间存在相关性的特征,采用CDE-LSSVM建立HIV-1蛋白酶抑制剂的药物定量构效关系模型。模型具有很好的拟合精度与预测精度,且优于最小二乘支持向量机、BP神经网络和径向基神经网络。  相似文献   

18.
在简单描述免疫系统中克隆选择和形状空间理论的基础上,提出了一种新的、基于形状空间的克隆选择算法.将该算法用于对多峰值函数的寻优,能得到很好的结果;借用遗传算法的积木块假设对该算法的收敛性进行分析,证明了本算法在满足一定前提条件下,能够以趋近于1的概率收敛.  相似文献   

19.
渣油裂解反应中,影响沥青产率的因素多,反应机理十分复杂,难以建立准确的机理模型。采用基于正交投影的正交信号校正(OSC)算法对输入变量测量数据进行预处理,剔除数据中所含的与待测变量如浓度、收率等无关的噪声信息;再实施OSC与偏最小二乘(PLS)回归相结合的OSC-PLS方法,建立渣油裂解装置沥青产率的软测量校正模型。结果显示:模型精度和稳定性较非线性方法均有显著提高,而且模型所需PLS成分数减少,模型更简洁。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号