首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During the field work of the 1998~1999's and 1999~2000's Chinese National Antarctic Research Expedition (CHNARE) in the Grove Mountains, east Antarctica, some Cenozoic sedimentary debris are found in two terminal moraine banks over the blue ice near Harding Mount in the center of this region. All the debris are of characteristics of glaciogenic diamicton and belong to the products of the glacial movements of the East Antarctic Ice Sheet. In this paper, the authors make a detailed study on the sedimentary environments of the sedimentary debris through petrologic, sedimentological, mineralogical, and geo-chemical methods. Characteristics of their sedimentary textures and structures, grain size distributions, quartz grains' surface textures and features, together with their geo-chemical compositions all show that these sedimentary rocks are a kind of subglacial lodgement tills which are deposited in the ice sheet frontal area by reactions of glacial movements and glaciogenic melt water. Their palaeoenvironmental implications in revealing the retreat history of East Antarctic Ice Sheet are discussed. The authors draw the conclusion from current study that the glacial frontal of the East Antarctica Ice Sheet might have been retreated to this area during the Pliocene Epoch, which represents a warm climate event accompanied by a large-scale ice sheet retreat in Antarctica at that time.  相似文献   

2.
Maher BA  Dennis PF 《Nature》2001,411(6834):176-180
The low concentration of atmospheric CO2 inferred to have been present during glacial periods is thought to have been partly caused by an increased supply of iron-bearing dust to the ocean surface. This is supported by a recent model that attributes half of the CO2 reduction during past glacial stages to iron-stimulated uptake of CO2 by phytoplankton in the Southern Ocean. But atmospheric dust fluxes to the Southern Ocean, even in glacial periods, are thought to be relatively low and therefore it has been proposed that Southern Ocean productivity might be influenced by iron deposited elsewhere-for example, in the Northern Hemisphere-which is then transported south via ocean circulation (similar to the distal supply of iron to the equatorial Pacific Ocean). Here we examine the timing of dust fluxes to the North Atlantic Ocean, in relation to climate records from the Vostok ice core in Antarctica around the time of the penultimate deglaciation (about 130 kyr ago). Two main dust peaks occurred 155 kyr and 130 kyr ago, but neither was associated with the CO2 rise recorded in the Vostok ice core. This mismatch, together with the low dust flux supplied to the Southern Ocean, suggests that dust-mediated iron fertilization of the Southern Ocean did not significantly influence atmospheric CO2 at the termination of the penultimate glaciation.  相似文献   

3.
Raymo ME  Mitrovica JX 《Nature》2012,483(7390):453-456
Contentious observations of Pleistocene shoreline features on the tectonically stable islands of Bermuda and the Bahamas have suggested that sea level about 400,000 years ago was more than 20 metres higher than it is today. Geochronologic and geomorphic evidence indicates that these features formed during interglacial marine isotope stage (MIS) 11, an unusually long interval of warmth during the ice age. Previous work has advanced two divergent hypotheses for these shoreline features: first, significant melting of the East Antarctic Ice Sheet, in addition to the collapse of the West Antarctic Ice Sheet and the Greenland Ice Sheet; or second, emplacement by a mega-tsunami during MIS 11 (ref. 4, 5). Here we show that the elevations of these features are corrected downwards by ~10 metres when we account for post-glacial crustal subsidence of these sites over the course of the anomalously long interglacial. On the basis of this correction, we estimate that eustatic sea level rose to ~6-13?m above the present-day value in the second half of MIS 11. This suggests that both the Greenland Ice Sheet and the West Antarctic Ice Sheet collapsed during the protracted warm period while changes in the volume of the East Antarctic Ice Sheet were relatively minor, thereby resolving the long-standing controversy over the stability of the East Antarctic Ice Sheet during MIS 11.  相似文献   

4.
Once thought to be devoid of life, the ice-covered parts of Antarctica are now known to be a reservoir of metabolically active microbial cells and organic carbon. The potential for methanogenic archaea to support the degradation of organic carbon to methane beneath the ice, however, has not yet been evaluated. Large sedimentary basins containing marine sequences up to 14?kilometres thick and an estimated 21,000 petagrams (1?Pg equals 10(15)?g) of organic carbon are buried beneath the Antarctic Ice Sheet. No data exist for rates of methanogenesis in sub-Antarctic marine sediments. Here we present experimental data from other subglacial environments that demonstrate the potential for overridden organic matter beneath glacial systems to produce methane. We also numerically simulate the accumulation of methane in Antarctic sedimentary basins using an established one-dimensional hydrate model and show that pressure/temperature conditions favour methane hydrate formation down to sediment depths of about 300?metres in West Antarctica and 700?metres in East Antarctica. Our results demonstrate the potential for methane hydrate accumulation in Antarctic sedimentary basins, where the total inventory depends on rates of organic carbon degradation and conditions at the ice-sheet bed. We calculate that the sub-Antarctic hydrate inventory could be of the same order of magnitude as that of recent estimates made for Arctic permafrost. Our findings suggest that the Antarctic Ice Sheet may be a neglected but important component of the global methane budget, with the potential to act as a positive feedback on climate warming during ice-sheet wastage.  相似文献   

5.
Thresholds for Cenozoic bipolar glaciation   总被引:1,自引:0,他引:1  
Deconto RM  Pollard D  Wilson PA  Pälike H  Lear CH  Pagani M 《Nature》2008,455(7213):652-656
The long-standing view of Earth's Cenozoic glacial history calls for the first continental-scale glaciation of Antarctica in the earliest Oligocene epoch ( approximately 33.6 million years ago), followed by the onset of northern-hemispheric glacial cycles in the late Pliocene epoch, about 31 million years later. The pivotal early Oligocene event is characterized by a rapid shift of 1.5 parts per thousand in deep-sea benthic oxygen-isotope values (Oi-1) within a few hundred thousand years, reflecting a combination of terrestrial ice growth and deep-sea cooling. The apparent absence of contemporaneous cooling in deep-sea Mg/Ca records, however, has been argued to reflect the growth of more ice than can be accommodated on Antarctica; this, combined with new evidence of continental cooling and ice-rafted debris in the Northern Hemisphere during this period, raises the possibility that Oi-1 represents a precursory bipolar glaciation. Here we test this hypothesis using an isotope-capable global climate/ice-sheet model that accommodates both the long-term decline of Cenozoic atmospheric CO(2) levels and the effects of orbital forcing. We show that the CO(2) threshold below which glaciation occurs in the Northern Hemisphere ( approximately 280 p.p.m.v.) is much lower than that for Antarctica ( approximately 750 p.p.m.v.). Therefore, the growth of ice sheets in the Northern Hemisphere immediately following Antarctic glaciation would have required rapid CO(2) drawdown within the Oi-1 timeframe, to levels lower than those estimated by geochemical proxies and carbon-cycle models. Instead of bipolar glaciation, we find that Oi-1 is best explained by Antarctic glaciation alone, combined with deep-sea cooling of up to 4 degrees C and Antarctic ice that is less isotopically depleted (-30 to -35 per thousand) than previously suggested. Proxy CO(2) estimates remain above our model's northern-hemispheric glaciation threshold of approximately 280 p.p.m.v. until approximately 25 Myr ago, but have been near or below that level ever since. This implies that episodic northern-hemispheric ice sheets have been possible some 20 million years earlier than currently assumed (although still much later than Oi-1) and could explain some of the variability in Miocene sea-level records.  相似文献   

6.
The first Cenozoic ice sheets initiated in Antarctica from the Gamburtsev Subglacial Mountains and other highlands as a result of rapid global cooling ~34 million years ago. In the subsequent 20 million years, at a time of declining atmospheric carbon dioxide concentrations and an evolving Antarctic circumpolar current, sedimentary sequence interpretation and numerical modelling suggest that cyclical periods of ice-sheet expansion to the continental margin, followed by retreat to the subglacial highlands, occurred up to thirty times. These fluctuations were paced by orbital changes and were a major influence on global sea levels. Ice-sheet models show that the nature of such oscillations is critically dependent on the pattern and extent of Antarctic topographic lowlands. Here we show that the basal topography of the Aurora Subglacial Basin of East Antarctica, at present overlain by 2-4.5?km of ice, is characterized by a series of well-defined topographic channels within a mountain block landscape. The identification of this fjord landscape, based on new data from ice-penetrating radar, provides an improved understanding of the topography of the Aurora Subglacial Basin and its surroundings, and reveals a complex surface sculpted by a succession of ice-sheet configurations substantially different from today's. At different stages during its fluctuations, the edge of the East Antarctic Ice Sheet lay pinned along the margins of the Aurora Subglacial Basin, the upland boundaries of which are currently above sea level and the deepest parts of which are more than 1?km below sea level. Although the timing of the channel incision remains uncertain, our results suggest that the fjord landscape was carved by at least two iceflow regimes of different scales and directions, each of which would have over-deepened existing topographic depressions, reversing valley floor slopes.  相似文献   

7.
The Gamburtsev Subglacial Mountains are the least understood tectonic feature on Earth, because they are completely hidden beneath the East Antarctic Ice Sheet. Their high elevation and youthful Alpine topography, combined with their location on the East Antarctic craton, creates a paradox that has puzzled researchers since the mountains were discovered in 1958. The preservation of Alpine topography in the Gamburtsevs may reflect extremely low long-term erosion rates beneath the ice sheet, but the mountains' origin remains problematic. Here we present the first comprehensive view of the crustal architecture and uplift mechanisms for the Gamburtsevs, derived from radar, gravity and magnetic data. The geophysical data define a 2,500-km-long rift system in East Antarctica surrounding the Gamburtsevs, and a thick crustal root beneath the range. We propose that the root formed during the Proterozoic assembly of interior East Antarctica (possibly about 1 Gyr ago), was preserved as in some old orogens and was rejuvenated during much later Permian (roughly 250 Myr ago) and Cretaceous (roughly 100 Myr ago) rifting. Much like East Africa, the interior of East Antarctica is a mosaic of Precambrian provinces affected by rifting processes. Our models show that the combination of rift-flank uplift, root buoyancy and the isostatic response to fluvial and glacial erosion explains the high elevation and relief of the Gamburtsevs. The evolution of the Gamburtsevs demonstrates that rifting and preserved orogenic roots can produce broad regions of high topography in continental interiors without significantly modifying the underlying Precambrian lithosphere.  相似文献   

8.
Hellmer HH  Kauker F  Timmermann R  Determann J  Rae J 《Nature》2012,485(7397):225-228
The Antarctic ice sheet loses mass at its fringes bordering the Southern Ocean. At this boundary, warm circumpolar water can override the continental slope front, reaching the grounding line through submarine glacial troughs and causing high rates of melting at the deep ice-shelf bases. The interplay between ocean currents and continental bathymetry is therefore likely to influence future rates of ice-mass loss. Here we show that a redirection of the coastal current into the Filchner Trough and underneath the Filchner-Ronne Ice Shelf during the second half of the twenty-first century would lead to increased movement of warm waters into the deep southern ice-shelf cavity. Water temperatures in the cavity would increase by more than 2 degrees Celsius and boost average basal melting from 0.2 metres, or 82 billion tonnes, per year to almost 4 metres, or 1,600 billion tonnes, per year. Our results, which are based on the output of a coupled ice-ocean model forced by a range of atmospheric outputs from the HadCM3 climate model, suggest that the changes would be caused primarily by an increase in ocean surface stress in the southeastern Weddell Sea due to thinning of the formerly consolidated sea-ice cover. The projected ice loss at the base of the Filchner-Ronne Ice Shelf represents 80 per cent of the present Antarctic surface mass balance. Thus, the quantification of basal mass loss under changing climate conditions is important for projections regarding the dynamics of Antarctic ice streams and ice shelves, and global sea level rise.  相似文献   

9.
Edgar KM  Wilson PA  Sexton PF  Suganuma Y 《Nature》2007,448(7156):908-911
Major ice sheets were permanently established on Antarctica approximately 34 million years ago, close to the Eocene/Oligocene boundary, at the same time as a permanent deepening of the calcite compensation depth in the world's oceans. Until recently, it was thought that Northern Hemisphere glaciation began much later, between 11 and 5 million years ago. This view has been challenged, however, by records of ice rafting at high northern latitudes during the Eocene epoch and by estimates of global ice volume that exceed the storage capacity of Antarctica at the same time as a temporary deepening of the calcite compensation depth approximately 41.6 million years ago. Here we test the hypothesis that large ice sheets were present in both hemispheres approximately 41.6 million years ago using marine sediment records of oxygen and carbon isotope values and of calcium carbonate content from the equatorial Atlantic Ocean. These records allow, at most, an ice budget that can easily be accommodated on Antarctica, indicating that large ice sheets were not present in the Northern Hemisphere. The records also reveal a brief interval shortly before the temporary deepening of the calcite compensation depth during which the calcite compensation depth shoaled, ocean temperatures increased and carbon isotope values decreased in the equatorial Atlantic. The nature of these changes around 41.6 million years ago implies common links, in terms of carbon cycling, with events at the Eocene/Oligocene boundary and with the 'hyperthermals' of the Early Eocene climate optimum. Our findings help to resolve the apparent discrepancy between the geological records of Northern Hemisphere glaciation and model results that indicate that the threshold for continental glaciation was crossed earlier in the Southern Hemisphere than in the Northern Hemisphere.  相似文献   

10.
The Southern Ocean biogeochemical divide   总被引:1,自引:0,他引:1  
Modelling studies have demonstrated that the nutrient and carbon cycles in the Southern Ocean play a central role in setting the air-sea balance of CO(2) and global biological production. Box model studies first pointed out that an increase in nutrient utilization in the high latitudes results in a strong decrease in the atmospheric carbon dioxide partial pressure (pCO2). This early research led to two important ideas: high latitude regions are more important in determining atmospheric pCO2 than low latitudes, despite their much smaller area, and nutrient utilization and atmospheric pCO2 are tightly linked. Subsequent general circulation model simulations show that the Southern Ocean is the most important high latitude region in controlling pre-industrial atmospheric CO(2) because it serves as a lid to a larger volume of the deep ocean. Other studies point out the crucial role of the Southern Ocean in the uptake and storage of anthropogenic carbon dioxide and in controlling global biological production. Here we probe the system to determine whether certain regions of the Southern Ocean are more critical than others for air-sea CO(2) balance and the biological export production, by increasing surface nutrient drawdown in an ocean general circulation model. We demonstrate that atmospheric CO(2) and global biological export production are controlled by different regions of the Southern Ocean. The air-sea balance of carbon dioxide is controlled mainly by the biological pump and circulation in the Antarctic deep-water formation region, whereas global export production is controlled mainly by the biological pump and circulation in the Subantarctic intermediate and mode water formation region. The existence of this biogeochemical divide separating the Antarctic from the Subantarctic suggests that it may be possible for climate change or human intervention to modify one of these without greatly altering the other.  相似文献   

11.
Shevenell AE  Ingalls AE  Domack EW  Kelly C 《Nature》2011,470(7333):250-254
The disintegration of ice shelves, reduced sea-ice and glacier extent, and shifting ecological zones observed around Antarctica highlight the impact of recent atmospheric and oceanic warming on the cryosphere. Observations and models suggest that oceanic and atmospheric temperature variations at Antarctica's margins affect global cryosphere stability, ocean circulation, sea levels and carbon cycling. In particular, recent climate changes on the Antarctic Peninsula have been dramatic, yet the Holocene climate variability of this region is largely unknown, limiting our ability to evaluate ongoing changes within the context of historical variability and underlying forcing mechanisms. Here we show that surface ocean temperatures at the continental margin of the western Antarctic Peninsula cooled by 3-4 °C over the past 12,000 years, tracking the Holocene decline of local (65° S) spring insolation. Our results, based on TEX(86) sea surface temperature (SST) proxy evidence from a marine sediment core, indicate the importance of regional summer duration as a driver of Antarctic seasonal sea-ice fluctuations. On millennial timescales, abrupt SST fluctuations of 2-4 °C coincide with globally recognized climate variability. Similarities between our SSTs, Southern Hemisphere westerly wind reconstructions and El Ni?o/Southern Oscillation variability indicate that present climate teleconnections between the tropical Pacific Ocean and the western Antarctic Peninsula strengthened late in the Holocene epoch. We conclude that during the Holocene, Southern Ocean temperatures at the western Antarctic Peninsula margin were tied to changes in the position of the westerlies, which have a critical role in global carbon cycling.  相似文献   

12.
Coxall HK  Wilson PA  Pälike H  Lear CH  Backman J 《Nature》2005,433(7021):53-57
The ocean depth at which the rate of calcium carbonate input from surface waters equals the rate of dissolution is termed the calcite compensation depth. At present, this depth is approximately 4,500 m, with some variation between and within ocean basins. The calcite compensation depth is linked to ocean acidity, which is in turn linked to atmospheric carbon dioxide concentrations and hence global climate. Geological records of changes in the calcite compensation depth show a prominent deepening of more than 1 km near the Eocene/Oligocene boundary (approximately 34 million years ago) when significant permanent ice sheets first appeared on Antarctica, but the relationship between these two events is poorly understood. Here we present ocean sediment records of calcium carbonate content as well as carbon and oxygen isotopic compositions from the tropical Pacific Ocean that cover the Eocene/Oligocene boundary. We find that the deepening of the calcite compensation depth was more rapid than previously documented and occurred in two jumps of about 40,000 years each, synchronous with the stepwise onset of Antarctic ice-sheet growth. The glaciation was initiated, after climatic preconditioning, by an interval when the Earth's orbit of the Sun favoured cool summers. The changes in oxygen-isotope composition across the Eocene/Oligocene boundary are too large to be explained by Antarctic ice-sheet growth alone and must therefore also indicate contemporaneous global cooling and/or Northern Hemisphere glaciation.  相似文献   

13.
Knutti R  Flückiger J  Stocker TF  Timmermann A 《Nature》2004,430(7002):851-856
The climate of the last glacial period was extremely variable, characterized by abrupt warming events in the Northern Hemisphere, accompanied by slower temperature changes in Antarctica and variations of global sea level. It is generally accepted that this millennial-scale climate variability was caused by abrupt changes in the ocean thermohaline circulation. Here we use a coupled ocean-atmosphere-sea ice model to show that freshwater discharge into the North Atlantic Ocean, in addition to a reduction of the thermohaline circulation, has a direct effect on Southern Ocean temperature. The related anomalous oceanic southward heat transport arises from a zonal density gradient in the subtropical North Atlantic caused by a fast wave-adjustment process. We present an extended and quantitative bipolar seesaw concept that explains the timing and amplitude of Greenland and Antarctic temperature changes, the slow changes in Antarctic temperature and its similarity to sea level, as well as a possible time lag of sea level with respect to Antarctic temperature during Marine Isotope Stage 3.  相似文献   

14.
Oxygen stable isotopic and ionic records, covering a period of 1745--1996, are recovered in DT001 ice core drilled in Princess Elizabeth Land, East Antarctica.Using empirical orthogonal function (EOF) analysis of the annually resolved glaciochemical time series, we find the first EOF (EOFI) represents sea-salt aerosols and is the proxy of sea level pressure (SLP) over a quasi-stationary low in the Southern Indian Ocean (SIO). δ^18O represents the sea surface temperature (SST) of the same ocean area. In the past two decades, four climatic waves as represented by SLP and SST proxies are found in the DT001 ice core, which in coincident with four Antarctic Circum-polar Waves (ACW) as revealed by NCEP/NCAR reanalysis. The phase difference between SST and SLP in the ice core is also coincident with that in ACW. Both ice-core record and reanalysis suggestthat there were no signals of ACW during 1958--1980, none during the overall recording period between 1745--1996, as there is no regular phase difference between SST and SLP.The ACW signal after early 1980s is probably attributable to the climate shift occurring over Antarctic Peninsula-Drake Passage region.  相似文献   

15.
Lowest temperature and snow accumulation rate are preconditions for retrieving the oldest ice core from the polar ice sheets. The 10-m depth firn temperature at Dome A, the summit of the Antarctic Ice Sheet, recorded by an automatic weather station (AWS) was -58.3℃ in 2005 and -58.2℃ in 2006, respectively. The 10-m firn temperature is an approximation of the annual mean air temperature (AMAT), and this is the lowest AMAT that has been recorded on the surface of the Earth. The stable isotopic ratios (δ^18O and δD) of surface snow at Dome A are also lower than at other ice sheet domes along the East Antarctic Ice Divide such as Dome C, Dome F, Dome B and Vostok. These facts indicate that Dome A is the "pole of cold" on the Earth. The total amount of snow accumulation rate in 2005 and 2006 was only 0.16 cm, equaling 0.016 m water equivalent per year, the lowest precipitation ever recorded from Antarctica. Preliminary evidences indicate that Dome A is a candidate site for recovering the oldest ice core.  相似文献   

16.
Oceanic Cd/P ratio and nutrient utilization in the glacial Southern Ocean   总被引:1,自引:0,他引:1  
Elderfield H  Rickaby RE 《Nature》2000,405(6784):305-310
During glacial periods, low atmospheric carbon dioxide concentration has been associated with increased oceanic carbon uptake, particularly in the southern oceans. The mechanism involved remains unclear. Because ocean productivity is strongly influenced by nutrient levels, palaeo-oceanographic proxies have been applied to investigate nutrient utilization in surface water across glacial transitions. Here we show that present-day cadmium and phosphorus concentrations in the global oceans can be explained by a chemical fractionation during particle formation, whereby uptake of cadmium occurs in preference to uptake of phosphorus. This allows the reconstruction of past surface water phosphate concentrations from the cadmium/calcium ratio of planktonic foraminifera. Results from the Last Glacial Maximum show similar phosphate utilization in the subantarctic to that of today, but much smaller utilization in the polar Southern Ocean, in a model that is consistent with the expansion of glacial sea ice and which can reconcile all proxy records of polar nutrient utilization. By restricting communication between the ocean and atmosphere, sea ice expansion also provides a mechanism for reduced CO2 release by the Southern Ocean and lower glacial atmospheric CO2.  相似文献   

17.
Watanabe O  Jouzel J  Johnsen S  Parrenin F  Shoji H  Yoshida N 《Nature》2003,422(6931):509-512
Recent ice core studies have raised the disturbing possibility that glacial-interglacial climate changes may be non-uniform across Antarctica. These findings have been confined to records from the Ross Sea sector of the continent, but significant deviations in other areas would call into question the widely assumed validity of the climate record obtained from Vostok, East Antarctica, on large spatial scales. Here we present an isotopic profile from a core drilled at Dome Fuji, situated 1,500 km from Vostok in a different sector of East Antarctica. The two records show remarkable similarities over the past three glacial cycles (the extent of the Dome Fuji record) in both large-amplitude changes, such as terminations, interglacials and interstadials and more subtle glacial events, even when the origin of precipitation is accounted for. Our results indicate that Antarctic climate is essentially homogeneous at the scale of the East Antarctic Plateau, possibly as a consequence of the symmetry of the plateau and the adjacent ocean.  相似文献   

18.
The surface-snow geochemical characteristics are discussed on the East Antarctic Ice Sheet, depending on the stable isotopes ratios of oxygen and hydrogen, concentration of impurities (soluble-ions and insoluble micro-particle) in surface snow collected on the ice sheet. The purpose is to study geochemical zones on the East Antarctic Ice Sheet and to research sources and transportation route of the water vapor and the impurities in surface snow. It has been found that the ratio coefficients, as S1, d1 in the equation δD =S1δ^18O d1, are changed near the elevation 2000 m on the ice sheet. The weight ratio of Cl^-/Na^ at the area below the elevation of 2000 m is close to the ratio in the sea salt; but it is about 2 times that of the sea salt, at the inland area up to the elevation of 2000 m. The concentrations of non-sea-salt Ca^2 ion (nssCa^2 ) and fine-particle increase at the interior up to the elevation 2000 m. At the region below the elevation of 2000 m, the impurity concentration is decreasing with the elevation increasing. Near coastal region, the surface snow has a high concentration of impurity, where the elevation is below 800 m. Combining the translating processes of water.vapor and impurities, it suggests that the region up to the elevation 2000 m is affected by large-scale circulation with longitude-direction, and that water-vapor and impurities in surface snow come from long sources. The region below the elevation 2000 m is affected by some strong cyclones acting at peripheral region of the ice sheet, and the sources of water and impurities could be at high latitude sea and coast. The area below elevation 800 m is affected by local coastal cyclones.  相似文献   

19.
Holbourn A  Kuhnt W  Schulz M  Erlenkeuser H 《Nature》2005,438(7067):483-487
The processes causing the middle Miocene global cooling, which marked the Earth's final transition into an 'icehouse' climate about 13.9 million years ago (Myr ago), remain enigmatic. Tectonically driven circulation changes and variations in atmospheric carbon dioxide levels have been suggested as driving mechanisms, but the lack of adequately preserved sedimentary successions has made rigorous testing of these hypotheses difficult. Here we present high-resolution climate proxy records, covering the period from 14.7 to 12.7 million years ago, from two complete sediment cores from the northwest and southeast subtropical Pacific Ocean. Using new chronologies through the correlation to the latest orbital model, we find relatively constant, low summer insolation over Antarctica coincident with declining atmospheric carbon dioxide levels at the time of Antarctic ice-sheet expansion and global cooling, suggesting a causal link. We surmise that the thermal isolation of Antarctica played a role in providing sustained long-term climatic boundary conditions propitious for ice-sheet formation. Our data document that Antarctic glaciation was rapid, taking place within two obliquity cycles, and coincided with a striking transition from obliquity to eccentricity as the drivers of climatic change.  相似文献   

20.
Fossiliferous glacial erratics have been found in moraines of the Grove Mountains, east Antarctica since 1998 by Chinese National Antarctic Research Expedition (CHNARE) teams. These erratics were derived from a suite of glaciogene strata hidden beneath the Antarctic Ice Sheet in the Lambert glacier drainage system, and thus provide a record of Cenozoic paleoenvironmental conditions and fossil biotas that are so far unknown from outcrops and drill cores in this region.By microfossil analysis, sparse Neogene spores and pollen grains are revealed, including: Toroisporis (Lygodiaceae), Granulatisporites (Pteridaceae?), Osmunda (Osmundaceae), Polypodiaceae, Magnastriatites (Parkeriaceae), Deltoidospora, Araucariaceae, Taxodiaceae, Podocarpus (Podocarpaceae), Dacrydium (Podocarpaceae),Pinus (Pinaceae), Keteleeria (Pinaceae), Picea (Pinaceae), Tsuga (Pinaceae), Chenopodiaceae, Artemisia (Asteraceae), Asteraceae, Gramineae,Fraxinoipollenites (Oleaceae), Oleoidearumpollenites (Oleaceae), Oleaceae, Operculumpollis, Nothofagidites (Nothofagus), Rhus, Quercus (Fagaceae), Juglans (Juglandaceae), Pterocarya (Juglandaceae), Liquidambar (Hamamelidaceae), Ulmus (Ulmaceae), Ulmoidepites (Ulmaceae), Tilia, Proteacidites (Proteaceae) and Tricolpopollenites; but without any marine diatoms. Most of the spores and pollen grains in the erratics are considered to originate from local sources except for some older exotic components that might be recycled from the basement sedimentary rocks by the ice sheet, so they are in situ sporo-palynological assemblages. Furthermore, since the source areas of the glaciogenic sedimentary rocks are assumed to be local or in the up glacier areas, the palynological assemblages in these erratics represent an inland terrestrial flora during a warmer period of the ice-sheet evolutionary history. The ages of these erratics are also discussed based on the occurrence of some diagnostic pollens such as the Artemisia, Chenopodiaceae and Nothofagus, which implies Neogene (most probably Pliocene). As a preliminary conclusion, we think that the existence of the Cenozoic glaciogenic rocks and their palynological assemblages present new evidence for a large scale glacial retreat event in the Grove Mountains of east Antarctica, and thus support a dynamic East Antarctic Ice Sheet (EAIS). Furthermore, the absence of marine fossils in the samples analyzed not only provides additional evidence for a terrestrial sedimentary environment of these erratics, but also indicates that there is no transportation of Cenozoic marine fossils from the adjacent areas of the Grove Mountains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号