首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
李刚  段隆振  孙焱平 《江西科学》2009,27(2):251-254
提出了一种基于多连续属性的离散化改进算法,在信息增益的离散化算法基础上,将离散化结果加以修正,并结合实例,详细说明该改进算法能更准确的判断出噪声数据、异常数据和错误数据,实现对这些数据的区别对待。  相似文献   

2.
结合聚类的思想与信息增益性质,给出一种基于距离与信息增益相结合的连续属性离散化方法.此方法不仅考虑了属性值之间的序关系,而且考虑了属性值之间的相对大小关系.此算法的一个最大优点是能自动调整离散化过程中的阈值,且能达到所要求的决策表相容度.  相似文献   

3.
WILD:基于加权信息损耗的离散化算法   总被引:2,自引:0,他引:2  
现实应用中常常涉及许多连续的数值属性,而目前许多机器学习算法则要求所处理的属性具有离散值。基于信息论的基本原理,提出一种新的有监督离散化算法WILD,它可以看成是决策树离散化算法的一种扩充,其主要改进在于考虑区间内观测值出现的频度,采用加权信息损耗作为区间离散化的测试,以克服决策树算法离散不均衡的问题。该算法非常自然地采用了自底向上的区间归并方案,可以同时归并多个相邻区间,有利于提高离散化算法的速度,实验结果表明该算法能够提高机器学习算法的精度。  相似文献   

4.
连续属性离散化是数据挖掘的重要预处理步骤,直接关系到挖掘或学习的效果,对于降低算法的实际空间要求和时间消耗、提高后续算法的运行速度具有极其重要的意义。在分析贪心算法的特点和基本思路的基础上,提出了一种新的以属性重要性辅助判断断点重要性的离散化算法,经实例验证,该离散化算法所获得的结果与现场技术人员依据经验所得结论一致。该算法的研究成果为后续的属性约简及数学模型的建立提供了重要的理论依据。  相似文献   

5.
本文探讨了基于属性重要性、基于信息熵、基于遗传算法和基于聚类的离散化算法,通过分析总结了各算法的优点及不足,并提出有待解决的问题.  相似文献   

6.
连续量决策信息表的离散化问题研究   总被引:1,自引:0,他引:1  
在粗糙集理论中,知识是以表格的形式表达的.当用粗糙集算法从连续量决策信息表中提取规则时,首先要对其进行离散化处理.针对连续量决策信息表离散化过程中存在的问题,本文中提出了2个定理并进行了证明.定理表明:在考虑决策信息表中属性值之间不可分关系的条件下,若决策信息表的值发生变化,则离散化结果必然发生变化.所以由单一样本构成的连续量决策信息表所得到的离散化结果不能用于实际的连续量系统中.  相似文献   

7.
李晶晶  肖大伟 《科技信息》2011,(20):207-209
文中将并行计算的思想融入粗糙集离散化过程中,提出了一种并行粗糙集离散化算法。该算法在保证离散化质量的前提下,将离散化务划分到多个处理器中同时处理,从而较大提高了离散化的效率。仿真实验结果说明了该算法的高效性。  相似文献   

8.
在用粗糙集理论解决连续系统的问题时,要求信息表必须是离散值.在对由连续量构成的信息表离散化时,首先要对决策属性的值域进行离散化。文中针对这一问题提出了3种确定离散化区间的方法,即经验分割法、等频分割法和等距分割法;又提出了2种求区间离散值的算法,即区间重心法和区间值平均法,并通过算例验证这些算法均是可行的,其中等距分割法中的区间值平均法效果最为满意。  相似文献   

9.
提出了基于断点辨别力的粗糙集离散化算法.通过分析候选断点与决策类之间的相关性,定义了候选断点对决策类的辨别力,并以此作为断点重要性的度量,实现连续属性的离散化.离散化后的决策系统不改变原有的相容性,而且能最大限度地保留有用信息.采用多组数据对该算法的性能进行了检验,并与其它算法做了对比实验实验结果表明该算法是有效的,而且当候选断点个数增多时仍具有较高的计算效率.  相似文献   

10.
提出了基于断点辨别力的粗糙集离散化算法.通过分析候选断点与决策类之间的相关性,定义了候选断点对决策类的辨别力,并以此作为断点重要性的度量,实现连续属性的离散化.离散化后的决策系统不改变原有的相容性,而且能最大限度地保留有用信息.采用多组数据对此算法的性能进行了检验,并与其他算法做了对比实验.实验结果表明此算法是有效的,而且当候选断点个数增多时仍有较高的计算效率.  相似文献   

11.
离散化是Rough集理论研究的一个重要内容,目前基于Rough集的离散化算法很难做到高效率和高识别率兼顾.文中分析了基于断点重要性算法和基于属性重要性算法的特点,确定了离散化思路,提出了一种基于Rough集的集成离散化算法.该算法能够有效降低候选断点的数目,快速地实现决策表的离散化.实验结果表明,文中算法保持了与已有算法可比的识别率,且运行效率更高.  相似文献   

12.
基于启发式信息熵的粗集数值属性离散化算法   总被引:1,自引:0,他引:1  
在一致性假设前提下,以数据集的统计性质作为启发式知识,从候选离散点集中选择离散点,根据数据集的期望值和方差来确定搜索最优离散点的区域,提出一种新的基于信息熵粗集数值属性离散化算法,并采用UCI国际标准数据集来验证新算法.新算法与已报道的算法所得到的离散断点集完全一致,决策表的离散化结果也相同,但时间代价不同,新算法比其计算效率提高40%~50%.  相似文献   

13.
提出一种基于分类目标的启发式离散化算法, 通过该算法能够解决粗糙集理论中的连续属性离散化问题. 该算法充分考虑目标分类和属性的重要性, 在减少决策规则的同时完成了属性约简. 通过茶味觉信号的验证及与传统算法结果的比较, 验证了所给算法的有效性.  相似文献   

14.
为了减少连续属性离散化后有用信息的丢失和信息系统总的断点数量,提出了一种具有全局聚类效果的多属性离散化算法.算法根据各属性预插入断点对信息系统近似分类质量的影响,来确定要插入断点的属性,从全局属性范围选择最佳断点.根据Ameva统计量来判断属性中最佳断点的位置,并以保证决策表的近似分类质量作为算法的终止条件.实验采用多...  相似文献   

15.
基于Rough Set理论中的不可分辨性原理,给出两个新的定义属性的最大区分值(Maximum Dis-cernibility Value,MDV)和属性冗余度(Attribute Redundancy Rate,ARR)。在数据预处理阶段,属性的MDV数值用于确定关于自组织映射网络SOM输出单元数量的启发式搜索策略;属性冗余度则用于衡量属性约简结果的信息冗余程度,并以此作为优化SOM网络输出层结构的依据。不依赖于领域经验知识,建立了MDV、SOM、ARR的组合算法模型,实现了Rough Set理论中连续属性的自动离散化计算,并明显提高了属性约简的速度。最后,通过项目实例对全过程进行有效验证。  相似文献   

16.
针对粗糙集中连续属性需要离散化问题进行了研究.根据数据对象的可分辨性原理构造超立方体,在数据空间上对信息表中的连续属性进行整体离散化处理.根据条件属性与决策属性的一致性关系,依照条件属性在粗糙集边界域中的分类能力来确定条件属性的重要性,在此基础上选取重要划分点对信息表中的连续属性进行局部离散化,同时以信息熵作为迭代约束条件.数值示例和实验表明这种整体与局部相结合的离散化方法是有效可行的.  相似文献   

17.
提出和探讨了一种新的基于模糊粗糙集和断点简约化的离散化方法.综合考虑到规则的支持度和可信度及其关系,应用属性离散指标作为离散化的标准,证明了该指标可以作为离散化彻底的充分条件.并且在时间复杂度和空间复杂度方面分析了算法的有效性,与同类算法比较可以发现该算法在基本不损失分类信息的基础上有效降低这两方面的复杂度,能有效地避免以往各种算法中出现的弊端.最后将其应用于电网故障诊断中,通过具体算例测试,证明该算法的有效性和实用性.  相似文献   

18.
依据经济学的效率定义以及教学活动的特殊性,理解有效教学的本质。从生态学理论出发,认识教学也是由生物因素和非生物因素相互作用而形成的教学生态系统。与教学生态系统中的物质循环、能量流动相比,信息流动具有重要的现实意义。课前的信息收集、分析与处理,课堂教学中的知识信息流以及课后的知识信息反馈是承载教学生态信息流的重要环节。认识教学生态系统中的生态信息流有助于促进有效教学的实现。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号